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There are 4 process communication
paradigms :

Shared Memory with Locks

Software Transactional Memory (STM)

Futures, Promises and Similar

Message Passing
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The actors are message passing
entities

As the fundamental unit of computation it has to embody :

® processing
e storage

e communication
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One actor is no actor,
they come in systems

,Carl Hewitt”
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An actor can:

® create more actors

I e send messages to others

III e change his behavior
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Asynchronous Message Passing

e each actor has an mail address

* messages can arrive in any order

* no intermediaries

* ordering guarantees must be implemented
e actors don‘t block ressources
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States & Actor model

e actors change state over time
e each actor has its own state due to time
* there is no global state
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History of the Actor model

* Hewitt, Bishop and Steiger's (1973) publication were
inspired by physics

* Gul Agha's (1985) dissertation

* this resulted in the full development of actor model
theory

* inthe 80’s at Ericsson’s Laboratory in Stockholm it
became clear that no language had a suitable
concurrency model

* Erlang took shape around 1988 by Joe Armstrong
* releasing Erlang as open source happened in 1998
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Erlang/OTP

e Erlang is a functional programming language

e ,Standard Library”is OTP (Open Telecom
Platform)

e a process in Erlang is an actor
e Erlang focuses failure isolation

e |location transperancy
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Erlang/OTP - Supervision

® . * error propagation for exit

= Supervisor

= Worker S|gna|5

* worker processes are
linked

* supervisor restarts the
group

* the other group of
(ﬁj processes under the same

f) supervisor isn‘t affected
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Erlang/OTP — Layering processes

* alayered system of
supervisors and workers

e if supervisor A dies or
gives up, any still-living
processes under it are
killed and supervisor Cis
informed

e the whole left-side
process tree can be
restarted

e supervisor B isn‘t affected
unless C decides to shut
everything down
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OTP goals

Productivity e high level building blocks

N b|||ty e solid praxis proven components

e the application structure provided by OTP makes it

Su PErvision simple to supervise and control the running system

e provides patterns for handling systematic code
upgrades

Upgradability

e OTP is rock solid and has been thoroughly battle

Reliable code base [y
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Akka

is an event-driven middleware framework
is for applications in Java and Scala
Erlang-like actor implementation

Strong focus on configurability

part of the Scala Standard Library



Erlang & Akka

* Actor communication can be strongly type-
safe

* Erlang works with dynamic typing

* Akka accepts all message-types, because all
messages are encapsulated in objects
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CAF — C++ Actor Framework

* has possibilities to make all communication
type-safe

e actors in CAF are lightweight, consisting of
only a few hundred bytes

* is taking care of the low-level side of things

 Message passing is network transparent,
actors can talk to each other, no matter where
they've been spawned
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Pony

is an object-oriented, actor-model,
capabilities-secure programming language

Correctness. Incorrectness is simply not
allowed

Performance. Runtime speed is more
important than everything except correctness

if compiling, it will also working
you can’t build a runtime error
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