Distributed Processes and Actors

One Paradigm to Rule them All ?

by Nils Schnabl/HAW Hamburg/TI

4/12/2016 Distributed Processes and Actors

There are 4 process communication
paradigms :

Shared Memory with Locks

Software Transactional Memory (STM)

Futures, Promises and Similar

Message Passing

4/12/2016 Distributed Processes and Actors 2

The actors are message passing
entities

As the fundamental unit of computation it has to embody :

® processing
e storage

e communication

4/12/2016 Distributed Processes and Actors

One actor is no actor,
they come in systems

,Carl Hewitt”

4/12/2016 Distributed Processes and Actors 4

An actor can:

® create more actors

I e send messages to others

III e change his behavior

4/12/2016 Distributed Processes and Actors

Asynchronous Message Passing

e each actor has an mail address

* messages can arrive in any order

* no intermediaries

* ordering guarantees must be implemented
e actors don‘t block ressources

4/12/2016 Distributed Processes and Actors

States & Actor model

e actors change state over time
e each actor has its own state due to time
* there is no global state

4/12/2016 Distributed Processes and Actors

History of the Actor model

* Hewitt, Bishop and Steiger's (1973) publication were
inspired by physics

* Gul Agha's (1985) dissertation

* this resulted in the full development of actor model
theory

* inthe 80’s at Ericsson’s Laboratory in Stockholm it
became clear that no language had a suitable
concurrency model

* Erlang took shape around 1988 by Joe Armstrong
* releasing Erlang as open source happened in 1998

4/12/2016 Distributed Processes and Actors

Erlang/OTP

e Erlang is a functional programming language

e ,Standard Library”is OTP (Open Telecom
Platform)

e a process in Erlang is an actor
e Erlang focuses failure isolation

e |location transperancy

4/12/2016 Distributed Processes and Actors

Erlang/OTP - Supervision

® . * error propagation for exit

= Supervisor

= Worker S|gna|5

* worker processes are
linked

* supervisor restarts the
group

* the other group of
(ﬁj processes under the same

f) supervisor isn‘t affected

4/12/2016 Distributed Processes and Actors 10

Erlang/OTP — Layering processes

* alayered system of
supervisors and workers

e if supervisor A dies or
gives up, any still-living
processes under it are
killed and supervisor Cis
informed

e the whole left-side
process tree can be
restarted

e supervisor B isn‘t affected
unless C decides to shut
everything down

4/12/2016 Distributed Processes and Actors 11

OTP goals

Productivity e high level building blocks

N b|||ty e solid praxis proven components

e the application structure provided by OTP makes it

Su PErvision simple to supervise and control the running system

e provides patterns for handling systematic code
upgrades

Upgradability

e OTP is rock solid and has been thoroughly battle

Reliable code base [y

4/12/2016 Distributed Processes and Actors 12

Akka

is an event-driven middleware framework
is for applications in Java and Scala
Erlang-like actor implementation

Strong focus on configurability

part of the Scala Standard Library

Erlang & Akka

* Actor communication can be strongly type-
safe

* Erlang works with dynamic typing

* Akka accepts all message-types, because all
messages are encapsulated in objects

4/12/2016 Distributed Processes and Actors

14

CAF — C++ Actor Framework

* has possibilities to make all communication
type-safe

e actors in CAF are lightweight, consisting of
only a few hundred bytes

* is taking care of the low-level side of things

 Message passing is network transparent,
actors can talk to each other, no matter where
they've been spawned

4/12/2016 Distributed Processes and Actors 15

Pony

is an object-oriented, actor-model,
capabilities-secure programming language

Correctness. Incorrectness is simply not
allowed

Performance. Runtime speed is more
important than everything except correctness

if compiling, it will also working
you can’t build a runtime error

References

C. Hewitt, P. Bishop, R. Steiger, A Universal Modular ACTOR Formalism for Artificial
Intelligence, in: Proceedings of the 3rd IJCAI, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1973, pp. 235-245.

G. Agha, Actors: A Model of Concurrent Computation In Distributed Systems, Tech.
Rep. 844, MIT, Cambridge, MA, USA, 1986.

M. Logan, E. Merritt, R. Carlsson, Erlang and OTP in Action, Manning Publications
Co., Stamford, CT, USA, 2011.

http://letitcrash.com/post/20964174345/carl-hewitt-explains-the-essence-of-the-
actor

http://akka.io/
http://actor-framework.org/
http://tutorial.ponylang.org/

4/12/2016 Distributed Processes and Actors 17

