
Usages for the BOPlish Content Sharing Facility

Max Jonas Werner
Department of Computer Science

Hamburg University of Applied Sciences
Hamburg, Germany

maxjonas.werner@haw-hamburg.de

ABSTRACT
The Browser-based Open Publishing content sharing facil-
ity (BOPlish) enables users to publish content directly from
within their Web browsers, leveraging a new set of tech-
nologies called Web Real-time Communication (WebRTC).
BOPlish thus encompasses the vision of a server-less Web
where users are not required to setup Web servers or reg-
ister DNS names in order to share content within a group
of interest. BOPlish provides programmers with the needed
infrastructure to resolve content names (URIs) to actual lo-
cations within a user network (Resolver API) and to acquire
content from a specific host (Content API). On top of this
infrastructure a wide range of novel use cases can be imple-
mented. This paper describes in detail a selection of these
usages that BOPlish enables. It characterizes the different
requirements that each use case poses (such as peer identity
verification, authentication, data integrity protection, avail-
ability/replication and fragmentation), outlines how these
are met within the BOPlish infrastructure and gives an eval-
uation of how BOPlish must be improved to support them.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; D.1 [Programming Techniques]:
General

General Terms
Design, Experimentation, Security

Keywords
Peer-to-Peer systems, Information-centric networking, Con-
tent dissemination

1. INTRODUCTION
Browser-based Open Publishing (BOPlish) envisions a new
paradigm of content dissemination on the World Wide Web
[9]. The concept is based on the idea that an ordinary Web
application served by a Web server and running in a client

browser uses WebRTC to establish Peer-to-Peer (P2P) con-
nections to other instances of that application running on
other browsers of the same User Community. A User Com-
munity is comprised of all users currently running the spe-
cific application inside their browsers.

BOPlish applications are initially served by a Web server
over HTTP/HTTPS. The aim is to eventually form a P2P
network between all browsers running that specific applica-
tion [10]. Having joined the network a user is not dependant
on the availability of the Web server anymore; in fact the
server may be shut down without affecting the functionality
of the network as such. Thus, BOPlish enables Web appli-
cation developers to implement applications on top of that
P2P network.

For this to work, BOPlish provides a platform consisting
of basically two API layers as indicated in Figure 1. Ev-
ery application using the JavaScript BOPlish library (or a
compatible different library) can make use of those two API
layers: The Name Resolver API is used to resolve a host-
independent identifier in the form of the authority part of a
URI to a specific host ID (a host ID can be interpreted as
its unique address). This host ID is then used to directly
connect to the given host and query content from it using
the Content API. The latter is only roughly defined in [9]
and thus a more detailed specification of the capabilities and
constraints of the Content API are provided in this paper.
Users share BOPlish-specific URIs that address a certain
piece of content such as a file or a chat group. In essence
BOPlish provides a location/identifier split, a vital part of
Information-centric Networking (ICN, [1]).

The decision of how these URIs are structured has a high im-
pact on the capabilities of the underlying architecture. One
central benefit of Content/Information-centric Networking is
that the names used to address content decouple the actual
content from its location. In BOPlish this is done by a layer
of indirection: The URI is resolved by the Name Resolver
(making use of a DHT) to a location-specific name.

The charm of BOPlish lies in the fact that it is instantly
deployable (by including the JavaScript code in an applica-
tion) and provides users a content publishing solution with-
out having to install any infrastructure or additional soft-
ware. Each BOPlish instance makes up a so called User
Community (or User Network) which is a network of indi-
vidual users sharing a certain interest. The reasoning behind



Name Resolver API

"user@identity.org"

goto XYZ1

3

2

DHT

"/beer.png"

4

010011...

Content API

Figure 1: Nodes in BOPlish retrieve content by is-
suing a lookup of the content’s user ID to the under-
lying DHT (1) which returns a pointer to the actual
node that holds the content (2). This pointer is then
used to open a WebRTC Data Channel to the peer,
query for the content (3) and transfer it (4).

this approach is that every instance may run different ap-
plications, have different access privileges and, most impor-
tantly, scale well since they do not need to handle a large
number of users as opposed to approaches that are to be
rolled out internet-wide.

This paper discusses the implications of trying to implement
use cases on top of BOPlish that are common to the Web
as of today but also use cases that have been envisioned
for ICN-like architectures. It starts with an outline of the
problem space and an overview of related work in section
2. Section 3 then outlines different scenarios where BOPlish
could be employed and ends with a discussion of the findings
in 4 as well as an outlook into future work to make BOPlish
a viable solution. As such, this paper is to be understood as
an analysis of recent published work as well as a source for
improvements to BOPlish.

2. PROBLEM STATEMENT AND RELATED
WORK

These are the questions that this paper is ought to answer:

• Which refining do the Name Resolver and Content
APIs need, if any?

• Does the joining and URI sharing model need further
elaboration? (e.g. how does a user join multiple P2P
networks? Is there one user network per server?)

• Which security constraints/requirements have to be
modeled? How are DHT entries authenticated? How
is namespace ownership guaranteed?

• Can the BOPlish architecture be used to demonstrate
real-world use cases?

Evaluating the applicability of BOPlish for certain use cases
implies an analysis of the employed naming scheme that has
a direct consequence on usability, flexibility and security.
BOPlish provides a hierarchical naming scheme based on
URIs:

bop://<user>@<domain>/<path>?<sec-credentials>

Each URI’s authority part (<user>@<domain>) is used
as input into the Name Resolver API, eventually resulting
in the caller to retrieve a concrete host ID that is associ-
ated with that authority. The path and query parts are
application-specific parameters for the Content API. How
URIs are published to the User Network and DHT entries
are created, authenticated and verified is not mentioned in
[9] and is part of the evaluation in this paper.

To determine which features and characteristics a Content-
centric platform must provide one has to differentiate be-
tween features that are a direct property of the network in-
frastructure and those that are end-to-end features of each
individual peer. This is especially important in the con-
text of security. In [3] Ghodsi et al. define the three se-
curity features of data integrity, confidentiality and source
authentication (provenance) as properties of end hosts and
availability as a property of the network. With regards to
availability they make the distinction between general un-
derlay network availability (which has no association with
the overlay architecture) and availability as a kind of denial-
of-service countermeasure where the naming scheme plays a
significant role.

The authors state that hierarchical names do not provide
an intrinsic binding between a user’s identity and the name
as opposed to flat names where the name usually consists
of a public key – which allows for the verification of the
content’s owner – and a label. Thus hierarchical names will
have to rely on a different method for verification (Public
Key Infrastructure, central third-party, etc.).

Usages for ICN approaches are described and evaluated in
[6]. The intent of that draft is to establish a common under-
standing of possible ICN scenarios and to be able to com-
pare different approaches with one another. The authors
also discuss general properties such as performance, secu-
rity, mobility or caching.

3. BOPLISH USAGES
This section sheds light on the different scenarios that are to
be enabled by BOPlish. The documented use cases are either
based on current usages of the centralized Web or influenced
by usages explicitly outlined for ICN (e.g. in [6]). One of the
examples for the latter is defined in [5]. The authors define
a content-centric API based on location awareness. Peers
can leave notes in the areas they are physically staying in
or request notifications when entering specific geographical
locations.

The ICN-specific use cases shall demonstrate whether the
general BOPlish approach is powerful enough to mimic these
(and thus provide the benefits of ICN as such) and how much
the limited Web runtime (in comparison to native applica-
tions) is able to offer developers.



3.1 Prerequisites
When evaluation the use cases below we identified necessary
properties that are common among all usages of BOPlish.
This is especially true for peer identities. Every peer in a
structured P2P network has to acquire a unique ID. This is
used in the BOPlish DHT implementation to route traffic to
that peer and to determine the storage range.

The user thus has to be assigned an ID unique to the specific
User Network she wants to join. The assignment process
needs to be secure in the sense that no user can (intentionally
or unintentionally) be assigned an ID that’s already assigned
to another user. The ID is used to identify the user’s peer
instance in the DHT. Above that there is the need to identify
real-world persons so that other users are able to make an
assertion about the document’s origin.

There are many approaches to secure ID assignment in struc-
tured P2P networks as well as to identity verification. RE-
LOAD employs a central trust anchor that’s responsible for
assigning user names and IDs jointly [4]. Much of the con-
cept of this process described by RELOAD could also be
applied to BOPlish. For this to make sense the Web run-
time – that has a very limited set of APIs – would need
to offer strong cryptography functions to JavaScript appli-
cations. Currently no browser offers functions that would
suffice for e.g. signature verification or encryption using an
asymmetric key pair. The W3C is working on an API to
make these available to Web applications and we are closely
following the progress there [2]. In the meantime the missing
functionality can be included by incorporating JavaScript
implementations of cryptography functions into BOPlish. It
has to be noted, however, that these cannot provide the same
security as a native API because they do not have access to
e.g. a cryptographically secure random number generator.

After the name acquiring process is done the user has a name
and an ID the application can commence the join procedure
for joining the overlay network that is already specified in
[9].

3.2 Document Sharing
One major use case on the Web is that of sharing static
documents between interest groups. There are very many
services deployed on the Web to facilitate this usage, e.g.
Dropbox1, Google Docs2 or Scribd3. The open-source soft-
ware ownCloud 4 is an example of a service that users can
host themselves. Generally users can upload documents to
these platforms and grant access either publicly or with a
defined group of collaborators. This is done by sharing an
HTTP URL with them or by inviting registered platform
members. The major drawback here is the reliance on a cen-
tralized service or the requirement to setup a custom server
and handle propagation of DNS records. Also users have to
trust the service provider with regards to content integrity,
i.e. that the provider does not modify the uploaded content.
A possible countermeasure is to attach digital signatures to
the content or to provide checksums as is commonly done

1https://www.dropbox.com
2https://docs.google.com
3http://www.scribd.com
4https://owncloud.org

with software downloads.

The benefit of a User-centric approach is that every user has
inherent control over a custom namespace and does not rely
on central infrastructure. Once attached to the User Net-
work one is able to publish content immediately. Thus, users
could be enabled to share documents without having to rely
on central service providers like the ones mentioned above.
One scenario specific to BOPlish is that a user may want
to provide a group of friends access to documents directly
from her computer. The first step in this scenario would be
to point the browser to an HTTP URL that retrieves the
BOPlish-enabled sharing application.

After the joining procedure has succeeded she can actually
start to publish the document to her interest group. This
implies that the document is first made available to the Web
application because browser’s offer no way of accessing the
file system directly. There are APIs for reading files that
the user has explicitly made available to the application,
though. The application then creates a BOPlish URI that
denotes that document. An example URI looks like this:

bop://max@example.org/family.png?csum=sha256:a2bd. . .

This link is displayed to the user and ready to be shared.
The sharing itself is done as with HTTP URLs, e.g. via
XMPP or email. Using the Name Resolver API the others
are then able to find out the ID of the host providing the
document under the given name (max@example.org), con-
nect to that host and employ the Content API to query
for the document. The csum query parameter of the URI
is used on the consumer side to verify the integrity of the
document. This way the producer as well as all consumers
can assure data integrity end-to-end, a property that is not
provided by commonly used cloud providers today.

3.3 Content Search
Similar to the document sharing usage is that of searching
for content on one particular peer. By changing the path
part of the BOPlish URI in a way that allows for wildcards
a search URI could look like this:

bop://max@example.org/Music/*johnossi*

Handing this path to the Content API would result in a list
of files that match the given query and allow for retrieving
a specific file.

3.4 Multi-protocol Usage
Since BOPlish just lays the ground for different use cases it
makes sense to use one User Community for different pur-
poses. A user may want to join a User Community and then
share documents but at the same time initiate a text chat
(see below). The URI syntax and semantics defined in [9]
does not account for this fact because the URI has no way of
specifying which use case the URI is meant to serve. Thus,
it is advisable to include this information in the URI itself.
Figure 2 shows a slightly different approach to the syntax.

Here, there is not authority part but rather a path com-
ponent immediately following the scheme name bop. This
path component is further built from the username serving



as unique namespace (the old authority part) followed by a
protocol identifier and optional protocol-specific parts. The
protocol identifier now enables different usages in one com-
munity, e.g. a chat service and a document sharing service.
One peer can then use that identifier to pass the URI to dif-
ferent modules of the application. Such a URI is generated
for every published item.

(a) bop:namespace:protocol

[/protocol-specific[?parameters]]

(b) bop:alice:document/img/images.png?

csum=sha1:1234abc...

(c) bop:bob:search/Music/*johnossi*

(d) bop:carol:chat/room1

Figure 2: Enhanced BOPlish URI syntax (a) and ex-
ample URIs of BOPlish content addresses for doc-
ument retrieval (b), search (c) and text chat (d).
The csum parameter in (b) is used for checking the
integrity of the retrieved document. This way the
producer as well as all consumers can assure data in-
tegrity end-to-end, a property that is not provided
by cloud providers today.

3.5 Content Offloading
One of the main benefits of location-independent naming
schemes is that content can easily be shifted from one host
to another without losing accessibility of the content. This
has various real-world applications; consider a user that has
just published a document from her computer and is about
to leave the house. She wants the content to remain available
even after turning the computer off. In BOPlish this can be
achieved with a three-step process:

1. Copy the content to another device

2. Join the User Network from that device

3. Update the name pointer of the affected content in the
DHT

Step 1 can be seen as part of the BOPlish architecture but
does not need to be. A user could leverage the document
sharing capabilities outlined above transfer the content in
question via a simple network transfer (e.g. using SCP) or
a portable disk. Step 2 is done by starting a browser on the
device and pointing it to the URL of the application serving
as entry point into the User Network. Since [10] mentions
the development of a head-less WebRTC component that
will be able to run WebRTC applications it is also imaginable
that the user fires up a BOPlish client on a server.

Joining the User Network implies that the new peer will
be assigned a unique ID and – depending on the appli-
cation running on top of BOPlish – supply authentication
credentials. For being able to update the name pointer of
the affected content the network must be able to determine
whether the new user is allowed to change that specific DHT
entry. Thus, two authentication schemes are necessary: One
for joining the network and one for updating DHT entries.

For actually modifying the name pointer the Name Resolver
API must provide a proper method. Handling secure addi-
tion and updating of key/value pairs in a DHT is covered
by [8]. The authors propose an API where in a simple case
the hash value of a secret is stored together with the actual
value (in our case the name pointer). The secret is then
obligatory to be able to remove that entry. An update is
carried out by first removing an entry and then adding a
new one. More sophisticated methods also described by the
authors allow for the storage and retrieval of authenticated
data using public/private key pairs. The Internet-Draft for
RELOAD [4] proposes a similar approach in that each client
may only store values that are authorized by its peer certifi-
cate.

3.6 Mobility
Being able to publish and consume content on the go would
be a major benefit for BOPlish users. ICN promises to elim-
inate problems with mobility such as changing IP addresses
and in a way BOPlish is able to provide similar “always-on”
capabilities for content. The key factor when talking about
mobility is “a host must be able to publish and/or consume
content even when its network address changes (frequently)”.

ICN approaches that are to be rolled out on the network
layer, replacing IP, offer these capabilities by making con-
tent totally host-unaware. Since BOPlish works on the ap-
plication layer and thus on top of IP it suffers from the same
problems that IP suffers from when it comes to mobility (e.g.
changing IP addresses).

The two usages of content offloading and content replication
can help to counter these problems. When a user publishes
content from a device and then is about to enter an area
with limited connectivity she can offload the content to an-
other host that ensures connectivity to the P2P network.
Replication, on the other hand, solves the problem by dis-
seminating the same content onto different peers. One prob-
lem that BOPlish faces here is that URIs are identity-driven
which means that even if two different peers host the same
content this content is not available under the same URI.
For replication to work in BOPlish it is thus necessary to
provide content for the same URI from different peers.

3.7 Real-time Text and A/V Chat
The name Web Real-Time Communication suggets that real-
time messaging is already built into WebRTC. This is true
in the sense DataChannels as well as audio/video (media)
channels can be established between two peers using We-
bRTC. The tricky part, however, lies in addressing and reach-
ing peers. Currently many solutions are being developed to
enable real-time chat with WebRTC, e.g. EasyRTC5, Tok-
Box6 and Vidyo7. What these providers have in common is
that signaling (i.e. call setup) and addressing are centralized
through their servers.

With BOPlish each user is able to get a unique address
(its BOPlish URI) that may be used to initiate a call to
that user. Let’s consider the use case flow of two BOPlish

5http://easyrtc.com
6https://opentokrtc.com
7http://www.vidyo.com



users wanting to establish an audio/video chat between each
other:

User Alice and user Bob both join a common User Network
determined by the bootstrap server the employ. Alice tells
Bob the name she uses on the network so that Bob can enter
that name into the application’s UI and hit a call button.
Offers and answers are exchanged between the two browsers
and eventually a WebRTC media session is established.

When looking at the process in detail there is nothing that
has to be changed in the BOPlish architecture as of now
(the joining is covered in the Prerequisites part of this sec-
tion). What is different in comparison to the two use cases
outlined above is that the URI does not have to contain
a specific path part. It suffices for Bob to enter the URI
bop://alice@example.org into his application. After hitting
the call button the application exploits the Name Resolver
API to retrieve Alice’s ID. This ID serves as the anchor for
routing the offer to Alice’s browser which then sends out an
answer and the call is established in a P2P manner.

What can be especially useful here is the feature of identity
providers that is to be built into WebRTC implementations.
The Rtcweb working group has specified the working of such
a feature in [7]. The main building blocks are that Alice
and Bob both log into a third-party service like an OpenID
provider or Facebook. This provider then generates an as-
sertion that is merged into the offer’s and answer’s SDP. On
the remote side a peer sends this assertion to the identity
provider used for generating the assertion. The provider
then can verify it and inform the browser of the result. If
it is positive the browser displays the remote peer’s identity
together with the video stream. This way BOPlish users
have a standardized way of establishing authenticated me-
dia streams.

4. CONCLUSIONS AND FUTURE WORK
The use cases envisioned in this paper allow us to conclude
that BOPlish is in principle able to provide the underlying
architecture for applications that were not possible before on
the Web. We have elaborated and analyzed specific usages
so that we are now able to counter BOPlish’s shortcomings
and buff up the parts that are only roughly defined in [9].

One key aspect we will have to investigate further is that of
name and ID assignment and verification which is a subject
of vast research in P2P networks as a whole. In specifying
a secure name/ID assignment process (most possibly using
asymmetric cryptography) a ground would be laid for appli-
cations that are far superior to the centralized Web islands
today.

The questions stated in 2 can now be answered more pre-
cisely with the help of the analysis provided in this paper.
It proposes concrete steps for refining the BOPlish API lay-
ers and gives insights into improvement strategies regarding
security constraints.

5. REFERENCES
[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher,

and B. Ohlman. A Survey of Information-Centric

Networking. IEEE Communications Magazine,
50(7):26–36, July 2012.

[2] D. Dahl and R. Sleevi. Web Cryptography API. W3C
Working Draft, World Wide Web Consortium.

[3] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti,
and S. Shenker. Naming in content-oriented
architectures. In Proceedings of the ACM SIGCOMM
Workshop on Information-centric Networking, ICN
’11, pages 1–6, New York, NY, USA, 2011. ACM.

[4] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and
H. Schulzrinne. REsource LOcation And Discovery
(RELOAD) Base Protocol. Internet-Draft – work in
progress 26, IETF, February 2013.

[5] J. Ott and J. Kangasharju. Opportunistic content
sharing applications. In Proceedings of the 1st ACM
Workshop on Emerging Name-Oriented Mobile
Networking Design - Architecture, Algorithms, and
Applications, NoM ’12, pages 19–24, New York, NY,
USA, 2012. ACM.

[6] K. Pentikousis, B. Ohlman, D. Corujo, G. Boggia,
G. Tyson, E. Davies, A. Molinaro, and S. Eum.
Information-centric Networking: Baseline Scenarios.
Internet-Draft – work in progress 01, IETF, October
2013.

[7] E. Rescorla. WebRTC Security Architecture.
Internet-Draft – work in progress 07, IETF, July 2013.

[8] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz,
S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu.
Opendht: A public dht service and its uses. In
Proceedings of the 2005 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’05, pages
73–84, New York, NY, USA, 2005. ACM.

[9] C. Vogt, M. J. Werner, and T. C. Schmidt.
Content-centric User Networks: WebRTC as a Path to
Name-based Publishing. In 21st IEEE Intern. Conf.
on Network Protocols (ICNP 2013), PhD Forum,
Piscataway, NJ, USA, Oct. 2013. IEEEPress.

[10] C. Vogt, M. J. Werner, and T. C. Schmidt. Leveraging
WebRTC for P2P Content Distribution in Web
Browsers. In 21st IEEE Intern. Conf. on Network
Protocols (ICNP 2013), Demo Session, Piscataway,
NJ, USA, Oct. 2013. IEEEPress. ICNP Best Demo
Award.


