
Loosely Coupled Actor Systems

for the Internet of Things

Master Seminar I

Raphael Hiesgen

Hamburg University of Applied Sciences

February 28, 2015

Contents

1 Introduction 1

2 The Actor Model 2
2.1 CAF–A Scalable Actor System . 2

3 A Programming Model for the IoT 3

4 Embedded Actors with CAF 5

5 Overview—Implementing Embedded Actors 6
5.1 Research Questions . 6
5.2 Risks . 7
5.3 Next Steps . 8

6 How to Test and Evaluate in the IoT 9
6.1 Testbeds . 10

7 Conclusion 10

1 Introduction

The Internet of Things (IoT) describes a network of nodes connected by Internet standards and
often requires minimal human interaction to work. Individual nodes often have limited hardware
capabilities and are dedicated to a single, simple task. Complex services are composed of many
cooperating nodes. This leads to a highly distributed work flow that relies on machine-to-machine
(M2M) communication. Further, communication is built upon open network standards and
commonly includes connectivity to the Internet.

Traditional application scenarios include sensor networks, which can collect data such as
environmental or cyber-physical conditions. Besides sensors, IoT networks include actuators that
can influence their environment, often in a very limited way. Built from these nodes are complex
applications that enable home automation, tracking physical and environmental conditions.
These systems enable machines to upload data to Internet servers, a task that originally required
human interaction. Thus, they facilitate the availability of information everywhere and anytime.

Developers of distributed applications need synchronization primitives as well as mechanisms
for error detection and propagation to ensure an appropriate service quality while working on a
network of machines. When faced with these challenges, many developers fall back to low-level
coding that focuses on specialized knowledge. As a result, code is barely portable, and often
hand-crafted, which introduces high complexity, many sources of errors and little generality.

The actor model is designed to model and develop concurrent systems and provides a high
level of abstraction for distributed software. It describes concurrent software entities known
as actors that communicate via network-transparent message passing. Developers can benefit
form a high abstraction level by using the actor model to develop applications for the IoT. It
allows them to focus on the application logic instead of spending time on implementing low-level
primitives.

We contribute the C++ Actor Framework (CAF) [1] that allows for native development in
C++ at high efficiency and a very low memory footprint. Its API is designed in a style familiar
to C++ developers. Furthermore, CAF features type-safe actor interfaces and a scalable work-
stealing scheduler. We are working to provide runtime inspections tools that enhance distributed
debugging. The communication in CAF is targets locally distributed multicore machines and is
built with the strong coupling known from traditional actor systems.

Our adaptations for the IoT weaken the coupling between actors and add features to
enable deployment in low-powered and lossy networks. These features include the handling
of unreliable links and infrastructure failures, provide a suitable error propagation model as
well as a lightweight secure and authenticated connectivity. We rely on protocols optimized for
the use in IoT environments. Specifically, we provide a network stack for CAF based on IPv6
over Low-power Wireless Area Networks (6LoWPAN) [2], the Constrained Application Protocol
(CoAP) [3] and the Datagram Transport Layer Security protocol (DTLS) [4]. Currently, CAF is
ported to RIOT [5], the friendly operating system (OS) for the IoT.

The remaining work is structured as follows. Section 2 introduces the the actor model as
a concept for distributed and concurrent applications. Further, the open source C++ Actor

Framework is presented. The following Section 3 discusses the use of the actor model for the
development of IoT applications and takes a look at the resulting challenges. In Section 4, we
outline our approach to adopt CAF to the IoT environment. Section 5 presents the questions we
want to answer in this project as well as the associated risks. In addition, the Section summarizes
of our next steps. Thereafter, Section 6 stresses the importance of testing and introduces some
available testbeds. Finally, a conclusion is drawn in Section 7.

1

2 The Actor Model

The actor model is designed for concurrent and distributed environments. It defines isolated
entities called actors, that run in parallel and solely interact via network transparent message
passing based on unique identifiers. As such, the model avoids race conditions and prevents
actors from corrupting the state of other actors.

New actors are create using the operation spawn. This operation is not limited to the runtime,
but can be called by actors as well. Thereby, workloads can be easily distributed, e.g., in a
divide and conquer approach.

Error handling in the actor model is implemented in monitors and links, which allow error
detection and propagation in local as well as distributed systems. When a monitored actor
terminates, the runtime environment sends a message containing the exit reason to all monitoring
actors. Links are bidirectional and express a stronger coupling. In a linked set of actors, each
actor will terminate with the same error code as its links. This allows the modeling of (sub-
) systems in which actors fail collective and thus avoid inconsistent or intermediate states.
Moreover, failed actors can be redeployed at runtime.

Hewitt et al. [6] proposed the actor model in 1973 to address the problems of concurrency and
distribution. Later, Agha focused on theoretical aspects in his dissertation [7] and introduced
mailboxing for processing actor messages. Further, he created the foundation for an open,
external communication [8].

A well-known implementation on the actor model is the Erlang programming language. It
was designed by Armstrong [9] and targeted telephony applications. As such is was meant for
distributed systems that run with minimal downtime. Although Erlang does not mention the
actor model directly, it provided the first de-facto implementation. A more recent implementation
is provided by the Akka framework [10] as part of the Scala standard distribution. It offers
object oriented as well as functional programming and runs in Java virtual machines (JVM).

2.1 CAF–A Scalable Actor System

The open source C++ Actor Framework (CAF) [11] aims to improve the development of concurrent
and distributed software with a focus on scalability. It features an exchangeable runtime
environment to enable scalability up to many cores and machines [12] as well as down to
embedded hardware. This versatility gives developers the opportunity to test and verify their
code on desktop machines before re-compiling and deploying the software on low-end devices.
Hence, CAF provides a seamless development cycle, enabling developers to ship only well-tested
components to the IoT. To ease testing and debugging, CAF offers type-safe messaging interfaces
that eradicate a whole category of runtime errors. Furthermore, we are working on tools to
monitor distributed actor systems. Under the title “Runtime Inspection and Configuration”
(riac) these tools allow developers to track messages between actors and inject new ones. Thereby,
specific scenarios can be recreated and tested as part of a distributed deployment.

In CAF, actors are created using the function spawn. This function takes a C++ functor or
class and returns a handle to the created actor. Hence, functions are first-class citizens in our
design and developers can choose whether they prefer an object-oriented or a functional software
design. Per default, actors are scheduled cooperatively using a work-stealing algorithm [13]. This
results in a lightweight and scalable actor implementation that does not rely on system-level
calls, e.g., required when mapping actors to threads.

Each actor has a behavior that consists of a set of message handlers which specify how it
processes incoming messages. Messages are buffered in the mailbox of the receiver in order of
arrival before they are processed. Behaviors may include a message handler that is triggered

2

if no other message arrives within a declared time frame. Actors are allowed to dynamically
change their behavior at runtime using become.

C++ is a strongly typed language that performs static type checking. Building upon this, it
is only natural to provide similar characteristics for actors. With typed actors, CAF provides a
convenient way to specify the messaging interface in the type system itself. This enables the
compiler to detect type violations at compile time and to reject invalid programs. In contrast,
untyped actors allow for a rapid prototyping and extended flexibility. Since CAF supports both
kinds of actors, developers can choose which to use for which occasion.

A major concern when using high-level abstractions in the context of embedded devices is
memory consumption. Facing hardware that is constrained to a few kilobytes of RAM, virtualized
runtime environments and memory inefficient garbage collectors are too costly. Careful resource
management as well as a small memory footprint are needed. To demonstrate the applicability of
our implementation to the IoT, we compare our system to the actor implementations in Erlang
and Scala (using the Akka library). Both systems are widely deployed and often referred to as
the most mature actor implementations available.

C A F s c a l a e r l a n g
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

Re
sid

en
t S

et
Siz

e [
MB

]
x

9 9 t h p e r c e n t i l e1 s t p e r c e n t i l e

9 5 t h p e r c e n t i l e5 t h p e r c e n t i l e
x

M e d i a n

7 5 t h p e r c e n t i l e2 5 t h p e r c e n t i l e

M e a n

Figure 1: Memory consumption for the creation of 220

actors

Figure 1 shows a box plot depicting the
memory consumption for a simple benchmark
program creating 220, i.e., more than a million,
actors. It compares the resident set size in
MB for CAF, Scala, and Erlang. CAF shows
a mean memory usage around 300 MB, while
Scala consumes a mean of 500 MB and Erlang
uses around 1300 MB of memory. In all cases,
the median memory consumption is a bit lower
than the mean. Creating such numbers of ac-
tors on an embedded device is not feasible, but
the benchmark illustrates that each actor in
CAF requires only a few hundred bytes. In ad-
dition, the graph shows how far the measured
values stray. For CAF, 1% of the measurements consumed up to 700 MB of memory. Scala
consumes up to the double amount, while Erlang peaks at more than 3 GB. Although this margin
is placed around the twice the mean in all cases, the absolute difference is far greater in the
cases of Scala and Erlang. Since embedded device are often constrained in memory, having lower
peaks in memory consumption allows for more precise runtime predictions and is desirable.

When comparing our system to the virtualized approaches, CAF reveals an extraordinary
small memory footprint in realistic application scenarios, while outperforming existing mature
actor implementations on commodity hardware [1].

3 A Programming Model for the IoT

The Internet of Things (IoT) is a major trend in the recent years. A lot of companies release
new devices in the hope to be first ones with the new idea that catches on. New smartwatches,
fitness trackers and home automation device are released frequently. Google already released
their operating system Android for watches and bough Nest for more than a Billion Dollars,
a company that develops “smart” thermostats and smoke detectors. Apple offers a hub for
home automation application and fitness tracking in their operating systems. Besides these big
players, a lot of smaller companies emerge that offer new products or hardware development
kits for hobbyists. Along with proprietary developments, new standards and open development
tools arise that help programmers to implement applications for these devices. In any case, the

3

number of connected devices is rising fast. As a result, more and more developers will create
applications for this environment.

Software for the IoT addresses a highly distributed environment. Nodes may be part of
larger networks of dynamic size and are possibly mobile. Hardware is often constrained and
limited in processing power, link performance and battery life. In addition, small packet sizes,
packet loss due to interference and temporary connection failures need to be considered.

Development for embedded systems is often done in low-level languages such as C. C does
not only give developers a lot of freedom and possibilities, but introduces many opportunities to
make mistakes. Moreover, message exchange and synchronization as well as error propagation
and mitigation have to be implemented. Communication is not only required to work properly
and with little overhead, but has to scale up to many devices, maybe more than expected
during the development process. For example, synchronization errors in concurrent software may
depend on the number of cores or nodes. When done incorrectly, communication overhead my
amplify and race conditions or life-/deadlocks occur. In addition, programs that perform well on
a few cores or nodes need not scale with increasing the available hardware resources, but may
even show worse performance. Implementing these primitives requires specialized knowledge
from multiple domains to develop and is usable by many different applications.

Debugging applications is an essential part of software development. A global view on a
distributed system is hard to achieve. Nodes do not share the same time and cannot applications
can not executed step by step as common on local machines. Further, messages are not always
received in a deterministic order over multiple tests. In addition, a network of constrained
devices is easily influenced by interference from the environment and own transmissions. This
leads to hardly reproducible test cases, which are, nevertheless, required to ensure scalability and
validate the application. Lastly, creating portable software is not an easy task in the presence
of a heterogeneous hardware environment. New hardware requires new drivers and possibly
adjustments to a different architecture.

A suitable runtime environment deployed on operating system (OS) can ease the development
process. The OS wraps hardware specific functionality and provides an standardized API that
improves software portability. Deployed on top, the middleware abstracts over communication
and synchronization primitives and addresses scalability. There are several embedded operating
systems available, namely ARM mbed OS [14], Contiki OS [15], TinyOS [16] and RIOT [5].
We target RIOT with our project as it is open source and provides C++ support as well as
multi-threading. It should be noted, that support for C++ is not a given as it introduces additional
overhead. For the middleware, we suggest the actor model, which is designed for concurrent and
distributed applications.

The actor model is characterized by a message-driven work flow for distributed systems.
Implemented as an efficient middleware layer it provides a scalable development platform.
However, it can not simply be deployed, as this new domain introduces new challenges. Traditional
actor environments do not take lossy networks and low-power nodes into account. Furthermore,
the strong coupling that was originally part of the actor model is not present here. In addition,
the distributed error handling capabilities were not designed with these constraints in mind and
require adjustment.

Security considerations are not included in the actor model and left to the runtime envi-
ronment. IoT devices such as fitness trackers or home automation systems have access to a
range of private data. In particular, security systems should work reliably and remain resilient
against tampering. Most IoT devices depend on communication, e.g., for joint operations or
data collection. Wireless networks are widely deployed as they ease setup and support mobility
of participants. As a result, the network should be secured as it is easily accessible in the vicinity
Security considerations should include encryption, authentication and authorization.

4

Runtime Environment Runtime Environment

Actor
Actor

Actor

Actor

Middleman Middleman

Actor

BrokerBrokerActor
Proxy

Actor
Proxy

Actor
Proxy

Actor

Figure 2: A simplified presentation of the communication between actors. The red-circled exchanged has to be
secured.

It is not necessary to secure the connection between all actors. Figure 2 depicts two simplified
runtime environments of CAF, running four and two actors respectively. Actors within the
same runtime environment run within the same process and can exchange messages directly.
Actors that communicate with remote actors are represented by an Actor Proxy in the remote
runtime environment, marked with the color in the Figure. When addressed, an Actor Proxy
communicates with the remote actor via the middleman, which handles the message exchange.
The middleman uses brokers to abstract over low-level IO. Instead of implementing encryption
and authentication in each actor, it is sufficient have a broker handle these tasks. The message
exchange that has to be secured and authenticated is circled in red.

4 Embedded Actors with CAF

Our overall goal is to ease the development of applications for the IoT. We provide a middleware
that raises the abstraction level when developing distributed applications. This reduces the
development overhead as the middleware handles often used functionality, such as network
communication, synchronization and provides error handling capabilities. Moreover, we aim to
improve the debugging process for distributed applications by providing tools that help monitor
the system and allow developers to step in and recreate scenarios. Using a maintained and well
tested middleware supports the development of reusable and robust code. Combined with an
embedded operating system portability is eased immensely. All in all, our efforts contribute to a
professionalization of embedded and distributed applications.

Enabling our framework to meet the challenges of IoT environments requires us to adjust
the messaging layer to handle link and infrastructure and implement a valid security scheme
that offers encryption and provides authentication and authorization for nodes.

Our adjusted message-passing layer models each message exchange as a transaction. It is
based on the request-response model specified by CoAP. The Confirmable (CON) message type
offers reliable message exchange as well as duplicate message detection. As a result, each message
exchange is independent and less vulnerable to connection failure than a data stream. To handle
cases where messages cannot be delivered after multiple retries, our runtime environment requires

5

error propagation and mitigation capabilities.
The overhead of reliable message transfer is not always desirable in IoT applications. For

example, regular updates from sensors may track a slow change over time, where a single message
may be lost without impact on the application. As a result we want to offer this choice to the user.
Instead of introducing new functionality, we map the semantics of synchronous and asynchronous
messages to the corresponding message types offered by CoAP. The unreliable message type
of CoAP, Non-confirmable (NON) message, is used for asynchronous communication whereas
the reliable message type, Confirmable (CON) message, is used for synchronous communication.
Hence, CoAP can be seen as a natural container for carrying actor messages over the network
layer.

Our transactional network stack for the IoT differs from the default TCP-based implemen-
tation in CAF. The stream-based stack uses TCP and IP over LAN/WAN type networks. In
contrast, we target at IEEE 802.15.4 or Bluetooth on the network access layer. The IP layer
deploys 6LoWPAN to keep IPv6 compatibility while the transport layer uses UDP. The message
exchange will be based on the request-response model from CoAP. This allows us to design the
message exchanges as transactions, which increases the robustness of our network stack.

Concerning security, we want to rely on DTLS for encryption. Naturally, the encryption
deployed on constrained hardware must be strong enough to resist crypto attacks on desktop
grade systems or clusters.

Wireless communication cannot only be easily captured, but messages can also be injected into
the network. Furthermore, it is important to prevent malicious nodes from joining our network.
Hence, we are working on an authentication and authorization scheme for IoT environments [17].

Deciding which node to trust is a nontrivial challenge. While distributing pre-shared
keys allows signing messages appropriately, the keys can be obtained if with the hardware is
compromised. Provided the incident is detected, trust of the compromised key can be revoked.
Public-key infrastructure (PKI) commonly deploys a “central” instance where trust is tracked.
In a loosely couple IoT environment this can not be guaranteed. The IETF working group
on Authentication and Authorization for Constrained Environments (ACE) is working on a
draft that specifies a straight forward approach to two-way authentication for IoT scenarios [18].
They suggest the deployment of such a trusted entity as a resource-rich server using X.509
certificates [19] for authentication.

5 Overview—Implementing Embedded Actors

The previous chapters provided an entry point to the research topic. The actor model can help
to achieve this goal by introducing it to the highly distributed IoT environment. This section
will present the research questions we hope to answer and shortly discuss the risks we face.
Lastly, it maps out our next steps.

5.1 Research Questions

Introducing an established concept to a new environment raises obvious questions regarding
suitability. Besides, technical details are of interest, i.e., if the protocols we deploy suit our use
case. If the implementation itself proves to be solid, user adaption is critical—but mostly out of
our hands.

What is the right way to the map the abstract communication between actors to
low-level protocols? Hiding complexity and implementation details results in a trade off
between generalization vs. configurability and complexity. As a result, we need to find the

6

right way to map the primitives of the actor model to the lower-level protocols. In our case we
abstract over a number of protocols, from IEEE 802.15.4 on the network access layer to CoAP
on the application layer. The resulting API offered to the application developer should meet the
expectations for the actor model, such as synchronous and asynchronous communication as well
as links and monitors for error handling. A desirable mapping provides an API that suggests
the associated costs.

Can we meet efficiency expectations regarding hardware resources? IoT devices are
often low-powered and have limited resources, such as battery life, CPU power or memory
consumption. Further, packet loss and link failures are common. Using an additional layer of
abstraction may introduce an ideally negligible overhead. In our case, the use of C++ leads to
an increase in memory usage. Furthermore, we provide a middleware that manages actors and
their network communication. As such, we have manage these resource efficiently to provide a
feasible solution. Once the basic implementation is working with a suitable mapping between
actor communication and low-level protocols, we need to optimized the implementation for this
constraint environment.

Is the actor model well suited to express typical application scenarios? While it is
often possible to model problems in many different ways, a good model provides abstraction,
is straight forward to express and has minimal overhead. Furthermore, extensibility and
maintainability are desired. How many of these criteria can be met for implementations of
typical use cases? Use cases in this category include the collection of data at sink, sending
updates to all node in the network and periodic monitoring tasks.

5.2 Risks

The success of this project depends on may different areas. Most obvious is the technical
feasibility, which includes efficient management of resources such as processing power, battery
life and memory.

If applications developed with our framework increases the energy consumption significantly
compared to a hand-crafted low-level solution, the abstraction is offers may not be worth it.
The same is true for memory requirements and processing overhead. Our first test show increase
in the size of our executable. Although memory is constantly getting cheaper, this does not
imply larger built-in memory. For IoT devices the focus is often on costs and device size. Costs
are calculated for the total number of devices produced which leads to a large amount, even if
the difference is only a few cents for a single node. In addition, we have to take the realization
of our high level concept into account.

Even if the implementation works, the overall concept might not succeed. he goal is to
provide a painless gain for the development of IoT applications. If the implementation of typical
tasks is cumbersome or does not allow enough opportunity for optimization the abstraction
might not be worth it.

Another one of our goals is a security scheme for IoT applications. Traditionally, security
is hard to do right and often entails unforeseen holes or flaws. As such, a scheme that meets
our demands may turn out to be vulnerable to new attacks or ask too much of our target
environment.

Lastly, community adoption is required to improve the project on a long term. Without
application to real-world problems it is hard to notice missing features, inconvenient application
scenarios and optimization opportunities. It should be noted, that the projects we are building

7

upon are doing well and receive public interest. While this is definitely not a guarantee it
provides a good foundation to reach interested people.

5.3 Next Steps

Applications in the IoT are often not deployed as a stand alone application, but compiled
with a light weight operating system (OS). Commonly, these systems provide significantly less
functionality than a desktop OS. Hence, libraries may need specific adjustments depending
on the target platform. Ongoing efforts to professionalize OS concepts and software for the
IoT—including a clear hardware abstraction—are undertaken by RIOT [5], the friendly OS for
the IoT.

The actor framework is split into two important parts that we need to enable on RIOT,
the core library that includes actors and local interactions and the io part implements allows
communication with remote nodes. Our development progress enable the core on RIOT. We
can execute simple programs on embedded devices using RIOT and CAF.

Before porting the io part to RIOT, we need to implement the network stack in CAF. It
requires UDP and CoAP for the transactional message passing layer. The UDP implementation
is straight forward based on the Berkeley socket API. CoAP on the other hand is standardized,
but lacks a widely adopted implementation that features a C++ API. For the prototype, we used
the open source library libcoap 1. However, it required adjustments to be usable in our context
and does not feature a C++ wrapper. Before implementing CoAP ourselves, research is necessary
to see if newer libraries with a suitable interface are available by now. In addition to libcoap,
RIOT has support for microcoap 2. Once the transactional layer is implemented in CAF, it needs
to be ported to RIOT as well. Hopefully, the experience with the core library will ease the
process.

We motivated the need for authentication in Section 3. Since this is not offered by DTLS,
a separate concept is required. As part of our ongoing research, we are working on a concept
that utilizes public-key cryptography, is suitable for low-powered nodes and can handle small
message sizes as well as compromised hardware.

After the communication with remote system works as desired, evaluation is required. This
includes an analyzation of the network traffic, to see if out fully implemented stack can back up
our previous analysis. Furthermore, it is interesting to see if our implementations scales similar
to actors systems on desktop hardware.

Finally, we need to consider error handling. Links and monitors require a new implementation
as they can not simply track a TCP connections anymore. This goes hand-in-hand with error
propagation.

To enhance out network stack, there are several additional drafts for CoAP. Communication
over 802.15.4 imposes constraints on the packet size, reducing it to 127 bytes. While IP
layer fragmentation is possible, it is not desirable as the loss of a single packet requires the
retransmission of all fragments. While this is not a problem with TCP based communication–
TCP performs a segmentation of its data streams–the IETF CoRE working group is preparing a
draft for allowing fragmentation on the application layer by CoAP block messages [20]. This
will allow splitting data into multiple chunks of 2x bytes, with an exponent x between 4 and 10.
The draft specifies two different Block Options, one for requests (Block 1) and one for responses
(Block 2) which require up to 3 bytes and manage the exchange of block messages.

Another CoRE draft of interest for future work is the CoAP Simple Congestion Control/Ad-
vanced (CoCoA) [21], which proposes an alternative congestion control mechanism for CoAP.

1http://libcoap.sourceforge.net
2https://github.com/1248/microcoap

8

Basic CoAP uses a binary exponential backoff similarly to TCP for retransmitting CON messages.
The initial timeout is chosen from the interval of 2 s to 3 s. CoCoA suggest to maintain two
estimators, one calculated from messages that required retransmission and one from messages
that did not. The timeout is then calculated as a weighted average. Both estimators are
initialized to 2 s, and still use a binary exponential backoff when retransmitting.

This strategy leads to a stronger adaption of the timeout to the network characteristics, as
the initial timeout rises after messages have been often retransmitted, or drops if they have been
acknowledged quickly. Since CoAP allows piggy backing data in ACK messages, this behavior
would allow adjusting the retransmit timeout if calculation is necessary to acquire the data.

6 How to Test and Evaluate in the IoT

The functionality of CAF as an actor library is well tested and ensured through regular testing
and work on the framework itself. Hence, we do not have to concern ourselves with validating
CAF as an implementation of the actor model. To ensure we did not break core functionality, we
can port the tests shipped with the framework to an embedded OS.

A major milestone of this project is the implementation of a new network stack as described
in Section 4. Therefore, its functionality has to be validated. A small setup is sufficient to ensure
that message exchanges satisfy the protocols and validate packet headers.

Once we are confident that our network stack is implemented correctly, we can move on to
test how well it suits our domain. When using IEEE 802.15.4, message sizes are constrained
to 127 Bytes with up to 108 Bytes for the payload. Larger messages lead to fragmentation
on the IP layer, which can heavily effect our network performance as all packets have to be
retransmitted. Our evaluation can show how heavy this impact is depending on the number of
message fragments. In case this drives performance into the ground the CoAP extension for
block messages could be prove useful [22]. On the other hand, the impact of fragmentation can
be magnified by packet loss, which is common in this environment.

A major source for packet loss is the interference form nearby nodes. As such, the number of
nodes and the topology have impact on the packet loss. The work of Betzler et al. [23] already
examined the packet loss based on different topologies and introduced an alternative algorithm
for congestion control.

There are different resources to consider in our evaluation. The first one is processing power,
which can be measured in CPU cycles. Basic actions, such as sending messages or context
switches between actors, each consume CPU. The addition resources we consume can then be
measured by the additional CPU cycles we require to perform an action, for example a context
switch between actors compared to a context switch between threads. Furthermore, energy
consumption should be evaluated. IoT devices often contain sleep cycles, during which energy
consumption should drop accordingly. On the other hand, there are many implementation
details that can influence energy consumption. For example, while in many cases busy waiting
is considered inefficient, there are situations where context switch requires more resources.

Memory is only a secondary concern as the available memory is expected to keep growing in
the next years. As long as our library is small enough to be deployable on our testbeds reducing
memory requirements is more of an optimization than a requirement.

One of the questions in Section 5.1 concerns the suitability of the actor model for expressing
typical application scenarios. Abstraction and suitability are not straight forward to measure.
Sivieri et al. [24] measure the expressiveness of their Erlang framework ELIoT by implementing
different protocols for distributed embedded applications and comparing the uncommented lines
of code. They use Contiki and TinyOS as established IoT platforms for comparison.

9

A challenge for tests in IoT environments in reproducibility. The test environment heavily
impacts the outcome of results, most often not in a deterministic way. As noted above, a major
concern is interference which may stem from other nearby nodes as well as sources outside
of the network. Therefore, predictions are often unreliable. To ensure applications work as
intended experimentally driven testing is important, i.e., test software often and under changing
conditions.

6.1 Testbeds

We have several test environments at hand. Each has different availability and effort requires
to deploy. While the environment easiest to use does not resemble a realistic environment, the
deployment that requires the most effort offers more realistic conditions. Hence, our testbeds
range from comfortable and fast to realistic and slow.

There are two testbeds available in our lab. RIOT, the embedded OS we use, provides a
native port which emulates the OS on a desktop machine. It only offers quick test to see if
the program compiles or to test specific functionality. Furthermore, we have small number of
Raspberry Pi nodes in our lab. They are powerful enough to run Linux and provide a good test
environment when implementing the new networks stack. We acquired USB dongles to enable
802.15.4 connectivity for the Pis as well as desktop PCs. In addition, we have a few embedded
devices in our lab that run RIOT. This heterogeneous setup is useful for a proof-of-concept
that validates our network stack. However, it does not provide enough nodes to setup different
topologies and observe highly distributed applications.

The FU Berlin owns a larger testbed. It offers up to 60 nodes distributed over several rooms,
floors and buildings. Even more nodes are deployed in the INRIA FIT IoT-LAB [25]. It deploys
more than 2500 nodes throughout France, which are available to the public and can be booked
online. Further, the IoT-LAB offers monitoring of energy consumption and network metrics.

7 Conclusion

Developing applications for the Internet of Things requires a lot of specialized knowledge. The IoT
is a highly distributed environment that relies on network communication and synchronization.
This work presented an approach to develop applications for the IoT domain from a high
abstraction level. Raising the level of abstraction will lead to an improvement in robustness and
code quality. Furthermore, it supports generalization and professionalization of the development
process.

Our approach introduces the C++ Actor Framework to the IoT domain. We proposed a new,
adaptive communication layer for CAF to enable its use in constrained networks. It is based on
the request-response layer from CoAP to provide a transactional message exchange. To ease
deployment and portability, we are working to enable CAF on the embedded OS RIOT. While
actors already run on single nodes, they cannot communicate yet, as the network stack is not
implemented.

An outline of upcoming work was given in Section 5.3. The next major task is the imple-
mentation of the transactional message passing layer. A local testbed allows validating the
protocol implementations before completing the port to RIOT. In general testing is important
when developing applications for the IoT because reproducibility is not a given in this domain.
Instead, experimentally driven testing is important.

Finally, the design concept of actor-based IoT applications is another important topic. For
example, how many actors should be deployed on a single node and is there a structure to build
applications this way?

10

References

[1] D. Charousset, T. C. Schmidt, R. Hiesgen, and M. Wählisch, “Native Actors – A Scalable Software
Platform for Distributed, Heterogeneous Environments,” in Proc. of the 4rd ACM SIGPLAN
Conference on Systems, Programming, and Applications (SPLASH ’13), Workshop AGERE! New
York, NY, USA: ACM, Oct. 2013.

[2] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals,” IETF, RFC 4919,
August 2007.

[3] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),” IETF,
RFC 7252, June 2014.

[4] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version 1.2,” IETF, RFC 6347,
January 2012.

[5] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt, “RIOT OS: Towards an OS
for the Internet of Things,” in Proc. of the 32nd IEEE INFOCOM. Poster. Piscataway, NJ, USA:
IEEE Press, 2013.

[6] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR Formalism for Artificial
Intelligence,” in Proceedings of the 3rd IJCAI. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245.

[7] G. Agha, “Actors: A Model Of Concurrent Computation In Distributed Systems,” MIT, Cambridge,
MA, USA, Tech. Rep. 844, 1986.

[8] G. Agha, I. A. Mason, S. Smith, and C. Talcott, “Towards a Theory of Actor Computation,” in
Proceedings of CONCUR, ser. LNCS, vol. 630. Heidelberg: Springer-Verlag, 1992, pp. 565–579.

[9] J. Armstrong, “A History of Erlang,” in Proceedings of the third ACM SIGPLAN conference on
History of programming languages (HOPL III). New York, NY, USA: ACM, 2007, pp. 6–1–6–26.

[10] Typesafe Inc., “Akka,” akka.io, March 2012.

[11] D. Charousset, R. Hiesgen, and T. C. Schmidt, “CAF - The C++ Actor Framework for Scalable and
Resource-efficient Applications,” in Proc. of the 5th ACM SIGPLAN Conf. on Systems, Programming,
and Applications (SPLASH ’14), Workshop AGERE! New York, NY, USA: ACM, Oct. 2014.

[12] M. Vallentin, D. Charousset, T. C. Schmidt, V. Paxson, and M. Wählisch, “Native Actors: How to
Scale Network Forensics,” in Proc. of ACM SIGCOMM, Demo Session. New York: ACM, August
2014, pp. 141–142. [Online]. Available: http://dx.doi.org/10.1145/2619239.26314714

[13] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Computations by Work Stealing,” J.
ACM, vol. 46, no. 5, pp. 720–748, Sep. 1999.

[14] ARM Ltd., “ARM mbed IoT Device Platform,” https://mbed.org, November 2014.

[15] Dunkels, Adam and Gronvall, Bjorn and Voigt, Thiemo, “Contiki - A Lightweight and Flexible
Operating System for Tiny Networked Sensors,” in Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, ser. LCN ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 455–462.

[16] Philip Levis and Sam Madden and Joseph Polastre and Robert Szewczyk and Alec Woo and David
Gay and Jason Hill and Matt Welsh and Eric Brewer and David Culler, “TinyOS: An Operating
System for Sensor Networks,” in Ambient Intelligence. Springer Verlag, 2004.

[17] T. Markmann, “Performance Analysis of Identity-based Signatures,” HAW Hamburg, Dept. Infor-
matik, Technical Report, August 2014.

[18] C. Schmitt and B. Stiller, “Two-way Authentication for IoT,” IETF, Internet-Draft – work in
progress 01, December 2014.

11

[19] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” IETF, RFC 5280,
May 2008.

[20] C. Bormann and Z. Shelby, “Blockwise transfers in CoAP,” IETF, Internet-Draft – work in progress 16,
October 2014.

[21] C. Bormann, A. Betzler, C. Gomez, and I. Demirkol, “CoAP Simple Congestion Control/Advanced,”
IETF, Internet-Draft – work in progress 02, July 2014.

[22] C. Bormann and Z. Shelby, “Blockwise transfers in CoAP,” IETF, Internet-Draft – work in progress 15,
July 2014.

[23] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells, “Congestion Control in Reliable CoAP
Communication,” in Proceedings of the 16th ACM International Conference on Modeling, Analysis
& Simulation of Wireless and Mobile Systems, ser. MSWiM ’13. New York, NY, USA: ACM, 2013,
pp. 365–372.

[24] Alessandro Sivieri and Luca Mottola and Gianpaolo Cugola, “Drop the phone and talk to the physical
world: Programming the internet of things with Erlang,” in SESENA’12, 2012, pp. 8–14.

[25] INRIA, “FIT/IoT-LAB,” https://www.iot-lab.info, November 2014.

[26] R. Hiesgen, D. Charousset, and T. C. Schmidt, “Embedded Actors – Towards Distributed Pro-
gramming in the IoT,” in Proc. of the 4th IEEE Int. Conf. on Consumer Electronics - Berlin, ser.
ICCE-Berlin’14. Piscataway, NJ, USA: IEEE Press, Sep. 2014, pp. 371–375.

12

