
Limiting Sybil Attacks in Structured P2P Networks

Hosam Rowaihy, William Enck, Patrick McDaniel, and Thomas La Porta

Department of Computer Science and Engineering

Pennsylvania State University

University Park, PA 16802

Email: {rowaihy, enck, mcdaniel, tlp}@cse.psu.edu

Abstract— One practical limitation of structured peer-to-peer
(P2P) networks is that they are frequently subject to Sybil
attacks: malicious parties can compromise the network by
generating and controlling large numbers of shadow identities.
In this paper, we propose an admission control system that
mitigates Sybil attacks by adaptively constructing a hierarchy
of cooperative peers. The admission control system vets joining
nodes via client puzzles. A node wishing to join the network is
serially challenged by the nodes from a leaf to the root of the
hierarchy. Nodes completing the puzzles of all nodes in the chain
are provided a cryptographic proof of the vetted identity. We
evaluate our solution and show that an adversary must perform
days or weeks of effort to obtain even a small percentage of nodes
in small P2P networks, and that this effort increases linearly
with the size of the network. We further show that we can place
a ceiling on the number of IDs any adversary may obtain by
requiring periodic reassertion of the IDs continued validity.

I. INTRODUCTION

Structured peer-to-peer (P2P) networks provide a coopera-

tive, stable, and robust mechanism for storing and retrieving

arbitrary content. Deployments of networks such as Chord [9],

CAN [4] and Pastry [5] can reach a massive scale, where

millions of users share content over global networks. These

networks can be used to successfully construct large-scale

applications such as file-sharing and distributed filesystems.

User identifiers (IDs) uniquely identify participant end-

points (nodes) in P2P networks. Structured networks reduce

search times by mapping content directly onto nodes based

on IDs. For this reason, the assignment and use of IDs is

essential to correct operation of the network. In particular,

it has been shown that an adversary that is able to generate

many shadow identities can arbitrarily subvert content storage

and acquisition [2]. To simplify, these Sybil attacks insert

malicious entities into the network such that any (or most)

content operations are in some way dependent on them.

Existing P2P networks provide little or no defenses against

Sybil attacks. One must limit the acquisition of multiple

identities to prevent the adversary from exploiting the sys-

tem. However, the absence of universal facilities for user

authentication makes such prevention difficult. For example,

one popular countermeasure to mitigate Sybil attacks is to

validate the uniqueness of the IP address of the joining node.

Such measures are ineffective because of the relative ease

with which IP addresses can be spoofed. The realities are

generalizable: any solution based on weak authentication of

the global and largely anonymous user community is doomed

to failure. Moreover, strongly authenticating that community

based on universally issued credentials is equally intractable.

This work presents an admission control system for struc-

tured P2P networks resilient to Sybil attacks. The system cre-

ates and maintains a self-organized hierarchy of participating

peers. A joining node appeals to a leaf node of the hierarchy

for admission which provides it with a cryptographic puzzle

[3]. After solving the provided puzzle, the joining node is

redirected to the leaf’s parent. This puzzle challenge/solution

process is recursively repeated with the parent until the joining

node reaches the root. The root node issues the joining node

a cryptographic proof of completion of the admission process.

This globally verifiable proof, called a token, encodes the

public key of the joining node and its ID. This token is then

used in subsequent operations to prove a node’s identity.

The admission control process limits the rate at which a

node can obtain IDs by controlling the amount of effort needed

to acquire them. While this effort is not overly burdensome on

a single node, it makes it difficult for an adversary to acquire

a large percentage of IDs.

Our analysis shows that an adversary must perform days or

weeks of effort to obtain even a small percentage of nodes

in small P2P networks, and that this effort increases linearly

with the size of the network. It takes an adversary just over

3 days to obtain 10% of the IDs in a network of only 8,000

nodes.

The remainder of this paper is organized as follows. Section

II discusses important related work. Section III details the

basic admission control scheme. Section IV outlines two

extensions to the basic scheme. Section V provides an analysis

of the efficiency and effectiveness of the proposed approach.

Section VI concludes.

II. RELATED WORK

Douceur [2] was the first to consider multiple identity

problems in the context of P2P networks. Dubbed the “Sybil”

attack, the registration of many new nodes to take control of a

system plagues more than just P2P networks. Any distributed

system in which an entity can arbitrarily establish identities,

is subject to its effects.

The designers of the original structured P2P overlays paid

little attention to the severity of Sybil attacks; most schemes

either neglect to consider it or include limited defenses. For

example, in Chord [9] and Pastry [5], the authors assumed that

a node’s ID was the hash of its IP address. However, an adver-

sary can simultaneously spoof many IP addresses to quickly

obtain a multitude of identities. Additionally, using hashed IP

addresses limits access to the network from machines behind

X
0

X
1

X
n

A

Fig. 1. Example ACS node organization. X0 is a bootstrap node of the ACS
tree of depth n; A is a joining node.

NAT boxes. In CAN [4], the authors assumed that nodes pick

random IDs when they enter the network. This places trust

on all nodes in the system and easily allows an adversary to

create many IDs.

Many different types of cryptographic solutions to the Sybil

attack have been proposed. While the application of cryp-

tography potentially provides a solution, no current method

efficiently mitigates the attacks. Because Sybil attacks result

from entities misidentifying themselves, requiring all nodes to

authenticate with public keys is a one approach to securing

these networks. Douceur [2] showed that without the use of a

centralized authority [7] that certifies all nodes, it is impossible

to prevent this attack. Srivatsa and Liu [8] suggested the use

of certificates with limited lifetime issued by the bootstrap

entry point that binds a node with a unique ID. This would

limit the number of IDs an adversary can obtain during a time

period and will depend on the lifetime of the ticket. However,

requiring all nodes to obtain a certificate that will bind it

with a unique ID is not only expensive but will require either

releasing private information or paying an amount of money

for the service.

Douceur [2] suggested using node validation by storage,

communication and computational challenges. He also found

theoretical bounds on the number of IDs an attacker can

accumulate if such challenges are used. However, he did not

specify how this can be done in a practical system.

III. ADMISSION CONTROL SYSTEM

In this section, we describe an Admission Control System

(ACS) for structured P2P systems. ACS defends against Sybil

attacks by adaptively constructing a hierarchy of cooperative

admission control nodes. A bootstrap node, located at the

root, allows users to join. This creates a tree structure as in

Figure 1. It is important that the upper layer nodes should

be both static and trustworthy, particularly for large and long-

standing networks. The bootstrap node in this system can be

a dedicated server and does not need to be one of the peers.

In Figure 1, X0 is the bootstrap node and A is a joining

node. Before joining, A must gain admission from a sequence

of nodes, starting with leaf node Xn and ending with root X0.

At each stage i, A is required to successfully solve a puzzle

presented by Xi.

The remainder of this section uses the following notation:

K+

A , K−

A Node A’s public and private keys
IDA Node A’s ID
Rj Random value where j is a session ID
TSi Time Stamp
Xi Node at level i
Xi−1 Parent of node Xi

KXi
Secret key known only to node Xi

KXi,Xi−1
Shared key between Xi and its parent

Note that · denotes concatenation, MAC(x, k) denotes the

keyed message authentication code of data x and key k, and

sig(x, k) denotes the signature of x using the private key k.

A. Join Protocol

Before joining the network, node A must generate a pub-

lic/private key pair K+
A /K−

A . When node, A, wishes to join the

network, it must first find a leaf node Xn. This is accomplished

by consulting a bootstrap node which will randomly select one

of the leaves in the system. Next, to gain admission from Xn,

A requests a puzzle. After A solves Xn’s puzzle, it is given a

token. This token is used to prove admission by Xn to Xn’s

parent. At tree height i, the protocol message flow proceeds

as follows:

A −→ Xi : K+

A (request)

Xi −→ A : TS1, h(K+

A · TS1 · R1), (puzzle)

MAC(K+

A · TS1 · R1, KXi
)

A −→ Xi : K+

A , R1, TS1, MAC(K+

A · TS1 · R1, KXi
) (solution)

Xi −→ A : IDXi
, TS1, MAC(K+

A · TS1, KXi,Xi−1
) (token)

In the request phase, A sends its public key K+
A which is

used to identify A during the joining process. Upon receiving

a request, the challenger, Xi, creates a cryptographic puzzle

based on a hash function. The hash puzzle contains two

parts—a known and unknown part. The unknown part consists

of an x-bit random number R1, where x is an exponentially

increasing hardness metric for the puzzle. The goal of the

solver is to determine R1, i.e., invert h(). As a cryptographic

hash function is non-invertible, this requires A to brute force

the solution, taking 2x−1 attempts on average. This may be

extended by making the length, x, dynamic, thereby allow-

ing malleable hardness as circumstances dictate. Note that

environments concerned with the computational diversity of

nodes can substitute alternative puzzles, e.g. memory-based

puzzles [1] which rely on memory-bound computations and

not on the actual computational power of a systems.

In order to provide stateless verification of puzzles, Xi

couples the puzzle with a MAC of A’s public key, a times-

tamp, and the puzzle solution R1. When A replies with

the solution, it bundles the MAC included with the puzzle.

Xi then calculates the MAC based on the received values

to verify the puzzle solution. The adversary cannot forge a

MAC, because only Xi knows its secret key. The public

key data and timestamp are included in the MAC to avoid

replay.Adding K+
A to the MAC ensures only A can use the

puzzle solution.

Once Xi has verified the puzzle solution, a token is given

to A. This token is sent to the next level admission node

along with a puzzle request. The token largely consists of a

MAC keyed with a secret known only by Xi and its parent

Xi−1. Again, to prevent replay, a timestamp and public key

are included in the MAC. Upon receiving the token, Xi−1 can

verify A has been admitted by Xi. This proof of admittance

by children is used for all subsequent requests:

A −→ Xi−1 : K+

A , IDXi
, TS1, MAC(K+

A · TSi, KXi,Xi−1
)

When A reaches the root, a final token format is issued by

X0 and an ID is assigned:

X0 −→ A : IDA, TSj , Sig(IDA · K+

A · TSj , K
−

X0
)

where IDA is h(K+
A ·RA). The node’s identifier is generated

from the cryptographic hash of the node’s public key and a

random value chosen by X0. The hash of the public key of

A and the random value is used instead of the hash of the

public key alone to prevent an attacker from generating enough

key pairs off-line until a desired ID is found. The hash also

uniformly distributes IDs and ultimately provides a balanced

distribution of content objects. The final token proves that A
successfully traversed the admission sequence and hence is

verifiably valid. All nodes are configured with the public key

of the root node and therefore can verify that A has IDA.

B. Security

The ACS is designed to limit Sybil attacks, not to prevent

them. Sybil attacks are still possible but, as shown in Sec-

tion V, are very expensive or intractable to mount. There are

two attack scenarios of interest: when the attacker is a member

of the ACS, and when it is not.

If the attacker is member of the ACS, it can take advantage

of its position. Instead of requiring new identities to traverse

the entire tree, the attacker can hand out tokens, reducing the

number of puzzles that must be solved. Such an attack can

be easily detected by the parent of the attacker by observing

the rate of token requests. If this rate surpasses a predefined

threshold, the node is detected and severed from the tree,

causing the entire subtree to rejoin. Because joining happens

at a random leaf, the average number of join requests seen by

a node depends on the overall average join rate and the node’s

hight in the tree. Knowing this information helps every node

in the system to determine the value of this threshold. We drop

the entire subtree because it is impossible to determine which

nodes are legitimate. After dropping the nodes from the tree,

the next task is to eject them from the P2P network. During

the join process, the intermediate tokens stores the path that

a joining node has traversed. This includes a series of IDs

representing the nodes in the path from the leaf to the root.

The path of a node can be stored in the final token provided

by the root. Using this, ejecting a full subtree from the P2P

network becomes easy; the root simply needs to broadcast a

revocation message containing the prefix of the subtree. After

receiving this message, nodes remove from their routing tables

all nodes with such a prefix in their path.

An attacker who is not a member of the ACS can slowly

obtain identities. Each time it will be required to traverse the

tree from the bottom up. The cost of solving the puzzles is

such that acquiring a significant fraction of nodes, especially if

the size of the network is large, is infeasible. An attacker who

is not member of the ACS may also choose to acquire many

nodes from one location. This attack is limited by ensuring

only a small number of tokens are released during a period of

time which limits the attack on that location without affecting

other parts of the network.

IV. IMPROVEMENTS OVER THE BASIC PROTOCOL

In this section, we propose two improvements over the basic

protocol. We propose a cut-off window mechanism to limit

the maximum number of IDs an attacker can accumulate over

time. We also discus how multiple roots can be used.

A. Cut-off Window

The basic protocol is designed to make obtaining enough

IDs to disrupt the normal operation of the network take a long

enough time so that it is likely an attacker will be discovered.

However, if an attacker is patient and silently accumulates

node IDs over a long period of time, it can achieve the required

number of IDs to launch a massive attack. To resolve this

weakness we propose the enforcement of a cut-off window.

This technique works as follows. In addition to requiring a

node to solve puzzles and obtain a token during the joining

process, a node is required to perform the same amount

of work again after time W from their initial join time to

maintain their membership. To do this, we define a token

expiration time. A node can anticipate when its token will

expire and reacquire a fresh one beforehand. This will allow

for uninterrupted operation of the node. However, an attacker

with n IDs will have to acquire n new tokens. This will

prohibit an attacker from accumulating many IDs.

The main drawback of this approach is that even legitimate

users may be asked to do the extra work of reacquiring tokens.

By setting the cut-off time, W , properly we can limit the

number of good users that must execute the rejoin process to a

small percentage who stay in the network for a very long time.

Finally, note that IDs are valid over multiple sessions, therefore

nodes reconnecting within W do not need to reacquire a token.

B. Multiple Roots

The single root represents a single point of failure. Hence

outages, DoS attacks, or other events that effect the availability

of root could cripple the network’s ability to add new identi-

ties. Hence, it is highly undesirable to employ a solution that

requires a single host to mediate every identity admission.

A straight forward solution is to replicate the root across

multiple hosts. In the simplest scheme, multiple instances of

the root (holding the same public/private key pair) are placed

at strategic locations in the network. Using DNS redirection a

joining member would be directed to closest root to complete

its admission to the P2P network. This not only will help

avoid the single point of failure, but may be necessary for load

balancing expensive cryptographic operations, i.e., identity

signing.

An alternate solution operates in a similar manner, except

that rather than having multiple instances of the same root, the

system allow for multiple roots. This would be accomplished

by designating a master root, which serves as a trusted CA that

issues certificates for roots that mediate independent admission

tress. Of course, one would have to be careful to balance the

size of all the root trees—perhaps by having the admission

process itself randomly select or balance root sub-trees.

V. PERFORMANCE EVALUATION

In the following subsections, we evaluate the performance

of the protocol and its enhancements in terms of fairness,

the difficulty of an attacker obtaining 10% of the nodes in

a network, and work required by normal nodes.

We assume that legitimate nodes arrive at the network

according to a Poisson distribution with an arrival rate of

λg . This is a common assumption used to model requests on

different servers. Node lifetimes are exponentially distributed

with a mean of µg . This is a heavy-tailed distribution meaning

that in our model a large fraction of nodes stay for a small

amount of time. This models actual user behavior because

most users will only be in the network for the time it takes

to download a file or two and then leave, whereas there will

be fewer server nodes which will be part of the network for

a long time. Finally, the difficulty of a puzzle is measured by

the time it takes to solve it.

In the following, we assume that an attacker is equal in

computational power to the average user. To analyze a more

powerful attacker we use the notion of multiple colluding

attackers. For example, if an attacker is twice as fast as the

average user then we consider that there are two colluding

attackers and so on. An attacker retains the node IDs it obtains

for an infinite time; whenever it obtains a node ID, the attacker

will immediately try to obtain another one. In this way, an

attacker may accumulate many node IDs over time.

A. Analysis

Puzzles and Fairness: The cost of joining the network for any

legitimate node will depend on the time it requires to traverse

the tree starting from a leaf up to the root and solving a puzzle

for each level. To make this process fair we need to fix the

time it takes the average user to join the network. To do this

we first set the joining difficulty (measured in average time)

to l. We note that, if a node must only solve a single puzzle of

average time l, it is possible that it will “get lucky” and solve

the puzzle on its first guess. In fact, because the distribution

of the time to solve the puzzle is uniform, the variance for the

time taken to solve it is high, and hence unfair.

To solve this problem, we divide the puzzle into n smaller

puzzles each of difficulty l/n such that the combined average

time is l. By dividing the large puzzle to several smaller

puzzles we can decrease the variance of the total puzzle

solving time from l2/12 to l2/12n.

We use n to be the minimum number of puzzles a node must

solve to join the network. If a node is joining on a branch of

the tree that has depth k ≥ n, the puzzle is divided into k
pieces, each of average duration l/k. In this case, the variance

will be tighter than the minimum requirement. If a node is

joining on a branch of the tree that is depth k < n, the puzzle

is divided into n pieces, and some nodes on the branch will

pose more than one puzzle.

Steady state: In the steady state the number of nodes in

the network, N , is found by considering the arrival rate of

legitimate nodes, λg , and mean lifetime µg .

N = λg × µg (1)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 8 16 24 32 40 48 56 64 72 80 88

N
u
m

b
e
r

o
f
N

o
d
e
s

Time (in hours)

Good Nodes
Attacker Nodes (8 Attackers)
Attacker Nodes (4 Attackers)
Attacker Nodes (1 Attacker)

Fig. 2. Number of good nodes and attacker nodes vs. time in a network
(attack start at steady state t = 10 hours).

To be able control fraction f of the nodes, an attacker will be

required to obtain fN
(1−f) IDs. If the average joining difficulty

is l and there are n attackers, the arrival rate of attacker nodes

will be λa = n
l

and the time to launch a successful attack:

Tattack =
fN

(1 − f)λa

(2)

Cut-off window: The cut-off window optimizationrequires

each node to reacquire a fresh token after time W . We choose

W such that most legitimate users will not be required to

reacquire new tokens during their lifetime in the network, but

so that attackers will have to relinquish node IDs they have

accumulated and perform work to reclaim each one.

Following our assumptions on the arrival rate and node

lifetime, the percentage, P , of legitimate nodes that will be

required to reacquire fresh tokens can be found as follows:

P = 1 −

1

µg

∫
0

W

e
−x
µg dx (3)

If there are n attackers, the combined number of nodes they

can accumulate (Nattacker) is found as follows, assuming that

a cut-off window of W is used and the average join time is l.

Nattacker =
n × W

l
(4)

From Equation 4, for a 10,000 node network, a 5 minute

puzzle provides ample protection. To protect against the same

number of attackers in a 100,000 node network, the puzzles

can be as small as 30 seconds; in a 1,000,000 node network,

the puzzle strength required is only 3 seconds. For our

simulations in the next section, we choose 5 minute puzzles,

because we simulate a small network.

B. Simulation Results

Here we show our simulation results in which we study the

resiliency of our protocol against Sybil attacks. We assume that

nodes join at random ACS leaves with uniform distribution.

Because nodes join through other nodes that are close to them,

there could be hot spots where the tree will increase in height

faster than other places; in our simulation, we do not consider

such cases. The height of the tree is then determined by the

order of the tree, the arrival rate and the average node lifetime.

We developed an ACS simulator using Java. The degree

of the tree is set to 8 meaning that no node has more than

8 children. The tree initially includes the bootstrap node as

the root and two levels of children nodes. These nodes are

assumed to have an infinite lifetime and hence will not fail or

leave the system. The arrival rate of legitimate nodes is set at 1

 0

 5

 10

 15

 20

 25

 30

 35

 0 8 16 24 32 40 48 56 64 72 80 88

P
e
rc

e
n
ta

g
e
 (

%
)

o
f
c
o
n
tr

o
lle

d
 n

o
d
e
s

Time (in hours)

8 Attackers
4 Attackers
1 Attacker

(a) No cut-off window

 0

 1

 2

 3

 4

 5

 6

 0 4 8 12 16 20 24

P
e
rc

e
n
ta

g
e
 (

%
)

o
f
c
o
n
tr

o
lle

d
 n

o
d
e
s

Time (in hours)

8 Attackers
4 Attackers
1 Attacker

(b) Cut-off window of four hours

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 4 8 12 16 20 24

P
e
rc

e
n
ta

g
e
 (

%
)

o
f
c
o
n
tr

o
lle

d
 n

o
d
e
s

Time (in hours)

8 Attackers
4 Attackers
1 Attacker

(c) Cut-off window of eight hours

Fig. 3. Attack on a steady network (attack starts at t = 10 hours).

node/second. The average lifetime of a legitimate node in the

network is exponentially distributed with a mean of 2.3 hours.

This is consistent with a study performed on the Gnutella P2P

network [6].

The average joining time, l, which is the time to traverse the

tree and solve the required puzzles was chosen to be 300 sec-

onds which is uniformly distributed. We choose 300 seconds

because of the network size; for bigger networks (100,000 and

1,000,000 nodes) puzzles would take only 30 and 3 seconds

respectively. Also, note that nodes need not reacquire tokens

for multiple sessions within W . We experiment with scenarios

that include one, four and eight attackers.

Steady State: In the first experiment, we evaluate our solution

when the network is in the steady state. The simulation

is run until the number of nodes stabilizes, and then an

attack is launched. As shown in Figure 2, the number of

legitimate nodes in the network stabilizes around 8280, which

is consistent with our analysis.

The attack starts at t = 10 hours. Our results show that one

attacker can obtain 10% of total nodes in 77 hours (more than 3

days) whereas four attackers can achieve the same percentage

in about 20 hours. We also found that a collusion of eight

attackers can get 10% of the nodes in less than 10 hours.

Figure 3(a) shows these percentages as time progresses.

Cut-off Window: From the results of the basic protocol, we

can see that although our admission control system is able to

greatly limit a single attacker, it does not do a good job when

more attackers are involved. The cut-off window is designed

to solve this problem.

We simulated scenarios with W = 4 and 8 hours and de-

termined how many legitimate users are required to reacquire

fresh tokens and the number of IDs an attacker or multiple

attackers can maintain. As in the previous experiment, the

attack was launched after the network reached steady state.

We assume that good nodes refresh their tokens before they

expire so they are not cut off the network. The number of

good nodes in these two cases remain the same as with the

steady state experiment, i.e. around 8280 nodes.

The number of nodes that an attacker can maintain perfectly

matches the analytical results we obtain from Equation 4.

When W = 4, a single attacker is only able to maintain around

48 nodes, four attackers can maintain around 192 nodes and

eight attackers can maintain around 384 nodes; all are well

under the 10% target. The percentages of nodes attackers can

maintain are shown in Figure 3(b).

To decrease the percentage of legitimate nodes that are

required to reacquire fresh tokens during their lifetimes we

experimented with a cut-off window of 8 hours. The results

show that the percentage of good nodes that need to do the

extra work drops to less than 2% while even 8 attackers

combined can only maintain around 8% of the nodes, still

under the 10% target. Figure 3(c) shows the percentages of

attacker nodes in this case.

Comparing this with the steady state results we can clearly

see that the cut-off window optimization greatly improves the

limiting capability of our protocol. We see that instead of

letting the number of attacker nodes grow without bounds as

in the basic protocol, the cut-off window places a limit on

this number and prevents it from growing larger. This comes

at the cost of requiring some legitimate nodes to reacquire

their tokens after some time.

VI. CONCLUSION

In this paper, we proposed an admission control system that

mitigates Sybil attacks by adaptively constructing a hierarchy

of cooperative admission control nodes. A node wishing to

join the network is serially challenged by the nodes from a

leaf to the root of the hierarchy. In this way, we exploit the

structure of hierarchy to distribute load and increase resilience

to targeted attacks on the admission control system. We also

define a cut-off window that provides a provable ceiling to the

number of node IDs a computationally bounded adversary can

obtain independent of the life and size of the network. This is

the first practical method that provides such a hard bound for

limiting Sybil attacks.

REFERENCES

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard,
memory-bound functions. Transactions on Internet Technology, 5(2):299–
327, 2005.

[2] J. Douceur. The sybil attack. In Proceedings of the First International

Workshop on Peer-to-Peer Systems 200, Cambridge, MA, March 2002.

[3] R. Merkle. Secure communications over insecure channels. In Commu-

nications of the ACM, 21(8):294–299, April 1978.

[4] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A scalable content-
addressable network. In SIGCOMM 2001.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In IFIP/ACM

Middleware. Heidelberg, Germany, 2001.

[6] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-
to-peer file sharing systems. In University of Washington Department of

Computer Science and Engineering Tech Report UW-CSE-01-06-02.

[7] E. Sit and R. Morris. Security considerations for peer-to-peer distributed
hash table. In 1st International Workshop on Peer-to-Peer Systems,

Cambridge, MA, March 2002.

[8] M. Srivatsa and L. Liu. Vulnerabilities and security threats in structured
overlay networks: A quantitative analysis. In ACSAC 2004.

[9] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM 2001, August 2001.

