CAF — A Short Introduction

Dominik Charousset
dominik.charousset@haw-hamburg.de

iINET RG, Department of Computer Science
Hamburg University of Applied Sciences

October 2014

Hochschule fiir Angewandte
Wissenschaften Hamburg
Hamburg University of Applied Sciences

)

nerT

The Problem With Implicit Sharing

When writing concurrent programs:
m Stateful objects need to be synchronized (if shared)
m Developer is responsible for thread-safety

m Challenges are ...

m Race conditions (“solved” by locks)

m Deadlocks/Lifelocks (caused by locks)

m Poor scalability due to queueing (Coarse-Grained Locking)
m Very high complexity (Fine-Grained Locking)

m Time-dependent errors make testing (almost) impossible

Dominik Charousset iNET — HAW Hamburg

The Problem With Implicit Sharing

When writing concurrent programs:
m Stateful objects need to be synchronized (if shared)
m Developer is responsible for thread-safety

m Challenges are ...

m Race conditions (“solved” by locks)

m Deadlocks/Lifelocks (caused by locks)

m Poor scalability due to queueing (Coarse-Grained Locking)
m Very high complexity (Fine-Grained Locking)

m Time-dependent errors make testing (almost) impossible

= Expert knowledge & experience required

Dominik Charousset iNET — HAW Hamburg 2

Compose Synchronized Classes

class Subject {
public:
void subscribe (function<void (int)> fun) {
unique_lock<mutex> guard{m_mtx};
m_subscribers.push_back (move(fun));
}
void broadcast (int value) {
unique_lock<mutex> guard{m_mtx};
for (auto& s : m_subscribers) s(value);
}
private:
mutex m_mtx;
vector<function<void (int)>> m_subscribers;

};

Dominik Charousset iNET — HAW Hamburg

Compose Synchronized Classes

class FooBar {
public:
void foo(Subject* s) {
unique_lock<mutex> guard{m_mtx};
m_subjects.push_back(s);
s->subscribe ([=] (int v) {
/*...%/ bar(v); /*...x%x/
)M
//
}
void bar (int value) {
unique_lock<mutex> guard{m_mtx};
//
}
private:
vector<Subject*> m_subjects;
mutex m_mtx;

};

Dominik Charousset iNET — HAW Hamburg

Compose Synchronized Classes

Threadl Thread2

iNET — HAW Hamburg

Compose Synchronized Classes

Threadl Thread2

[J(int val) {

%B:baro;

[} subscribe(f) _ " Subject

FooBar

.—h e

o (%]
\
\
\

Dominik Charousset iNET — HAW Hamburg

Compose Synchronized Classes

Threadl Thread2

_ broadcast(42) {]
operator()(42)
foo() . FooBar
o b

Dominik Charousset iNET — HAW Hamburg

Compose Synchronized Classes

Threadl

foo()

Thread2

o)

_ broadcast(42) {]

operator()(42)

bar()

subscribe(.

.

Dominik Charousset

iNET — HAW Hamburg 5

Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
— Rich Hickey

Dominik Charousset iNET — HAW Hamburg

Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
— Rich Hickey

m Libraries with threads & locks are no longer black boxes
m Composition of two thread-safe classes can deadlock

m User has to know about implementation details:

m Which code runs asynchronously/where?
m Which functions are “thread-safe"?
m Which function uses which lock?

Dominik Charousset iNET — HAW Hamburg

Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
— Rich Hickey

m Libraries with threads & locks are no longer black boxes

m Composition of two thread-safe classes can deadlock
m User has to know about implementation details:

m Which code runs asynchronously/where?
m Which functions are “thread-safe"?
m Which function uses which lock?

= Abstraction of OO programming unfolds

Dominik Charousset iNET — HAW Hamburg

The Actor Model

Actors are concurrent entities, that ...
m Communicate via message passing
m Do not share state
m Can create (“spawn”) more actors

m Can monitor other actors

Dominik Charousset iNET — HAW Hamburg

The Actor Model — Programming Model

receive
next
message

‘ pattern 1 matched M

pattern 2 matched M

) el
o
@l
o

Actor Programming is Message-Oriented Programming
m Actors are active objects
m No direct method invocation, only messages
m Messages passing hides location of receiver
m Receiver pattern matches on content of incoming messages

Dominik Charousset iNET — HAW Hamburg

The Actor Model — Linking of Actors

o
(©)
o

alice

link

I
¢
exit message
(non-normal exit reaso

quit()

Dominik Charousset iNET — HAW Hamburg

The Actor Model — Linking of Actors

exit message
(non-normal exit reasol

quit()

m Actors can link their lifetime

m Errors are propagated through exit messages
m When receiving an exit message:

m Actors fail for the same reason per default
m Actors can trap exit messages to handle failure manually

m Build systems where all actors are alive or have collectively failed

Dominik Charousset iNET — HAW Hamburg

The Actor Model — Linking of Actors

Trapping exit messages enables:
m Notification on success (normal exit reason)
m Report errors back to client (non-normal exit reason)
m Re-deployment of workers on (hardware) node failure

m Supervising spawned workers

Dominik Charousset iNET — HAW Hamburg

10

Benefits of the Actor Model

m High-level, explicit communication between SW components

m Robust software design: No locks, no implicit sharing
m High level of abstraction for developing software

Dominik Charousset iNET — HAW Hamburg 11

Benefits of the Actor Model

m High-level, explicit communication between SW components
m Robust software design: No locks, no implicit sharing
m High level of abstraction for developing software

m Abstraction over deployment

m Flexible & modular systems
m Managing heterogeneous environments (but not yet on HW level)

Dominik Charousset iNET — HAW Hamburg

11

Benefits of the Actor Model

m High-level, explicit communication between SW components

m Robust software design: No locks, no implicit sharing

m High level of abstraction for developing software
m Abstraction over deployment

m Flexible & modular systems

m Managing heterogeneous environments (but not yet on HW level)
m Applies to both concurrency and distribution

m Divide workload by spawning actors
m Network-transparent messaging

Dominik Charousset iNET — HAW Hamburg

11

Benefits of the Actor Model

m High-level, explicit communication between SW components
m Robust software design: No locks, no implicit sharing
m High level of abstraction for developing software
m Abstraction over deployment
m Flexible & modular systems
m Managing heterogeneous environments (but not yet on HW level)
m Applies to both concurrency and distribution
m Divide workload by spawning actors
m Network-transparent messaging
m Provides strong failure semantics

m Hierarchical error management
m Re-deployment at runtime

Dominik Charousset iNET — HAW Hamburg

11

CAF — Actors in C++11

m CAF is an actor system based on C++11

Dominik Charousset iNET — HAW Hamburg

CAF — Actors in C++11

m CAF is an actor system based on C++11
m Efficient program execution

m Low memory footprint
m Fast, lock-free mailbox implementation

Dominik Charousset iNET — HAW Hamburg

12

CAF — Actors in C++11

m CAF is an actor system based on C++11
m Efficient program execution
m Low memory footprint
m Fast, lock-free mailbox implementation
m Targets both low-end and high-performance computing

m Embedded HW
m Multi-core systems

Dominik Charousset iNET — HAW Hamburg

12

CAF — Actors in C++11

m CAF is an actor system based on C++11
m Efficient program execution

m Low memory footprint
m Fast, lock-free mailbox implementation

m Targets both low-end and high-performance computing

m Embedded HW
m Multi-core systems

m Uses internal DSL for pattern matching of messages

Dominik Charousset iNET — HAW Hamburg

12

CAF Core Architecture

Type System

1/8

iNET — HAW Hamburg

CAF Core Architecture

Serialization Layer

Pattern Matching Engine

Type System

Dominik Charousset

iNET — HAW Hamburg

2/8

13

CAF Core Architecture

Middleman

OpenCL Binding

Serialization Layer

Pattern Matching Engine

Type System

Cooperative Scheduler

Dominik Charousset

iNET — HAW Hamburg

3/8

13

CAF Core Architecture

Proxy Actor

OpenCL Actor Facade

Middleman

OpenCL Binding

Local (CPU) Actor

Serialization Layer

Pattern Matching Engine

Type System

Cooperative Scheduler

Dominik Charousset

iNET — HAW Hamburg

4/8

13

CAF Core Architecture

Message Passing Layer

A\

Proxy Actor

OpenCL Actor Facade

Middleman

OpenCL Binding

Local (CPU) Actor

Serialization Layer

Pattern Matching Engine

Type System

Cooperative Scheduler

Dominik Charousset

iNET — HAW Hamburg

5/8

13

CAF Core Architecture

Message Passing Layer

A\

Proxy Actor

OpenCL Actor Facade

N

Local (CPU) Actor

Managed completely . .
by middleman lagg Sl

Cooperative Scheduler

Dominik Charousset

iNET — HAW Hamburg

6/8

13

CAF Core Architecture

Message Passing Layer

A\ A\

Proxy Actor OpenCL Actor Fac
Middieman Openc:}a/o:‘ted by using
spawn_cl<Signature>(
Serialization Layer (kernel_source,
kernel_name,

Local (CPU) Actor

dimensions);

Cooperative Scheduler

Dominik Charousset

iNET — HAW Hamburg

7/8

13

CAF Core Architecture

)
) Message Passing Layer
]

A A\

Proxy Actor OpenCL Actor Facade

Middleman OpenCL Bin/diuv/
Crated by using one of:

Serialization Layer spawn(fun, args...);
spawn<Impl>(ctor_args...);

Type System

Local (CPU) Actor

Cooperative Scheduler

Dominik Charousset iNET — HAW Hamburg

8/8

13

Classes vs. Actors

class KeyValStore { become (

public:
void set (Key k,

}7

Dominik Charousset

Val get(Key k) const;

on(atom("set"), arg_match)
>> [=](Key k, Val v) { 1},

Val v); on(atom("get"), arg_match)
>> [=](Key k) { }
)

iNET — HAW Hamburg

14

Classes vs. Actors

class KeyValStore
public:

void set (Key k,

}7

m Method invocation

Dominik Charousset

Val get(Key k) const;

{ become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { 1},

Val v); on(atom("get"), arg_match)
>> [=](Key k) { }
)

m Message passing

iNET — HAW Hamburg

14

Classes vs. Actors

class KeyValStore {

become (

public: on(atom("set"), arg_match)
>> [=](Key k, Val v) { 1},
void set(Key k, Val v); on(atom("get"), arg_match)

}7

m Method invocation

m Race conditions likely

Dominik Charousset

Val get(Key k) const;

>> [=](Key k) { }
)

m Message passing

m Data race impossible

iNET — HAW Hamburg

14

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);

Val get(Key k) const;
}s
m Method invocation
m Race conditions likely

m Concurrent performance
is a function of
developer skill

Dominik Charousset

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)

>> [=](Key k) { }

)

m Message passing

m Data race impossible

m Supports massively
parallel access &
remote invocation

iNET — HAW Hamburg

14

API| — Creating Actors

// args: constructor arguments for Impl
template<class Impl,

spawn_options Os = no_spawn_options,
typename... Ts>
actor spawn(Ts&&... args);

// args: functor followed by its arguments

template<spawn_options Os = no_spawn_options,
typename... Ts>
actor spawn(Ts&&... args);

m Create actors from either functors or classes

m Spawn options can be used for monitoring, detaching, etc.

m Creates event-based actors per default

Dominik Charousset iNET — HAW Hamburg

15

APl — Event-based Actor Class

class event_based_actor : ... {

template<typename... Ts>
void send(actor whom, Ts&&... what);

template<typename... Ts>

response_handle sync_send(actor whom, Ts&&...

void become (behavior bhvr);
void quit(uint32_t reason);
//

};

m Base for class-based actors
m Type of implicit se1f pointer for functor-based actors

Dominik Charousset iNET — HAW Hamburg

what) ;

16

APl — Remote Communication

// makes actor accessible via network
void publish(actor whom, uintl6_t port);

// get handle to remotely running actor
actor remote_actor (std::string host, uintl6_t port);

m Message passing is network transparent
m Both local and remote actors use handles of type actor

m Network primitives not exposed to programmer

Dominik Charousset iNET — HAW Hamburg

17

Example

behavior math_server () {
return {
[1(int a, int b) {
return a + b;
}
};
}
void math_client (event_based_actor* self, actor ms)
sync_send(ms, 40, 2).then(
[=]1(int result){
cout << "40 + 2 = " << result << endl;
}
);
}

// spawn(math_client, spawn(math_server));

Dominik Charousset iNET — HAW Hamburg

Example

behavior math_server () {
return {
int a, int b) {
resurn a + b;

}

} .

} return message handler for

voi{ incoming messages (used until | self, actor ms) {
s replaced or actor is done)

cout << "40 + 2 = " << result << endl;
}
)
}

// spawn(math_client, spawn(math_server));

Dominik Charousset iNET — HAW Hamburg

18

Example

behayior math server ()

{

r[send a message and then
wait for response
(using a "one-shot handler")

};
¥

void th_client (event_bagsed_actor* self,
sync_send (ms, 40, 2).then

[=]1 (int result){
cout << "40 + 2
}
);
}
// spawn(math_client,

Dominik Charousset

actor ms) {

= " << result << endl;

spawn (math_server));

iNET — HAW Hamburg

18

Example

behavior math_server () {
return {
[1(int a, int b) {
return a +\b;
}
} this actor "loops" forever
vo (or until it is forced to quit) self,

=] (10t Tresult)t
cout << "40 + 2
}
);
}
// spawn(math_client,

Dominik Charousset

actor ms) {

= " << result << endl;

spawn (math_server));

iNET — HAW Hamburg

18

Example

behpstioxr math caruvax 0 L

this actor sends one
message and receives one
messages

};
}
void math_client (event_based_actor* self,
sync_send (ms, 40, 2).then(
[=]1 (int result){

actor ms) {

cout << "40 + 2 = " << result << endl;

¥
)
}

// spawn(math_client, spawn(math_server));

Dominik Charousset iNET — HAW Hamburg

18

Example

behavior math_server ()
return {
[1(int a, int b) {
return a + b;

{

}

};
}
voi) r*x self, actor ms)

s spawn server & client

Wlt << endl;
}

);

}

// spawn(math_client,

Dominik Charousset

spawn (math_server));

iNET — HAW Hamburg

18

Serialization in CAF

m Non-intrusive serialization backend

m User-defined types need to be announced

m POD-like data: pointer to members or getter + setter

m Complex data: implementation of custom uniform_type_info

m All announced types can use caf::to_string

Dominik Charousset iNET — HAW Hamburg

19

Serialization in CAF — PODs

struct foo {
std::vector<int> aj;
int b;
};
// required by announce ()
bool operator==(const foo& lhs, const foo& rhs) {
return 1lhs.a == rhs.a
&% lhs.b == rhs.b;
}
int main(int, charx*xx) {
announce<foo>(&foo::a, &foo::b);

/7

Dominik Charousset iNET — HAW Hamburg

20

Patterns for Actor Programming

m Spawn one actor per task, keep individual actors simple

Dominik Charousset iNET — HAW Hamburg

Patterns for Actor Programming

m Spawn one actor per task, keep individual actors simple

m Compose complex behavior out of small, easily testable actors

Dominik Charousset iNET — HAW Hamburg

21

Patterns for Actor Programming

m Spawn one actor per task, keep individual actors simple
m Compose complex behavior out of small, easily testable actors

m Push stateful operations to new actors

Dominik Charousset iNET — HAW Hamburg 21

Patterns for Actor Programming

m Spawn one actor per task, keep individual actors simple
m Compose complex behavior out of small, easily testable actors
m Push stateful operations to new actors

m Use “recursive” message loops (no stack overflow possible)

Dominik Charousset iNET — HAW Hamburg 21

Patterns for Actor Programming

m Spawn one actor per task, keep individual actors simple

m Compose complex behavior out of small, easily testable actors
m Push stateful operations to new actors

m Use “recursive” message loops (no stack overflow possible)

m Do not block indefinitely, define “continuation points”

Dominik Charousset iNET — HAW Hamburg

21

Interruptible Computation

// adds numbers [i, last) unless ’stop’ 1is received
void counter (event_based_actor* self, actor client,
size_t value, size_t i, size_t last) {
if (i == last) {
self ->send (client, value);
self ->quit ();
return;
}
self ->become (
on(atom("stop")) >> [=] {
self ->quit ();
},
after (std::chrono::seconds (0)) >> [=] {
counter (self, client, value + i, i + 1, last);

Dominik Charousset iNET — HAW Hamburg

22

Thank you for your attention!

Home page: http://actor-framework.org

Sources: https://github.com/actor-framework/actor-framework

Dominik Charousset iNET — HAW Hamburg

23

