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The Problem With Implicit Sharing

When writing concurrent programs:
Stateful objects need to be synchronized (if shared)
Developer is responsible for thread-safety
Challenges are ...

Race conditions (“solved” by locks)
Deadlocks/Lifelocks (caused by locks)
Poor scalability due to queueing (Coarse-Grained Locking)
Very high complexity (Fine-Grained Locking)

Time-dependent errors make testing (almost) impossible
⇒ Expert knowledge & experience required
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Compose Synchronized Classes

class Subject {
public:
void subscribe(function <void(int)> fun) {

unique_lock <mutex > guard{m_mtx};
m_subscribers.push_back(move(fun ));

}
void broadcast(int value) {

unique_lock <mutex > guard{m_mtx};
for (auto& s : m_subscribers) s(value);

}
private:
mutex m_mtx;
vector <function <void(int)>> m_subscribers;

};
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Compose Synchronized Classes

class FooBar {
public:
void foo(Subject* s) {

unique_lock <mutex > guard{m_mtx};
m_subjects.push_back(s);
s->subscribe ([=]( int v) {

/*...*/ bar(v); /*...*/
});
// ...

}
void bar(int value) {

unique_lock <mutex > guard{m_mtx};
// ...

}
private:
vector <Subject*> m_subjects;
mutex m_mtx;

};
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Compose Synchronized Classes
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[](int val) {
    ....
    fb.bar();
    ....
}
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Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
– Rich Hickey

Libraries with threads & locks are no longer black boxes
Composition of two thread-safe classes can deadlock
User has to know about implementation details:

Which code runs asynchronously/where?
Which functions are “thread-safe”?
Which function uses which lock?

⇒ Abstraction of OO programming unfolds
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The Actor Model

Actors are concurrent entities, that ...
Communicate via message passing
Do not share state
Can create (“spawn”) more actors
Can monitor other actors
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The Actor Model – Programming Model

case 1

input: M pattern 1 matched M

case 2pattern 2 matched M

else

receive 
next 

message

case Npattern N matched M

else

else

Actor Programming is Message-Oriented Programming
Actors are active objects
No direct method invocation, only messages
Messages passing hides location of receiver
Receiver pattern matches on content of incoming messages
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The Actor Model – Linking of Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()
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The Actor Model – Linking of Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()

Actors can link their lifetime
Errors are propagated through exit messages
When receiving an exit message:

Actors fail for the same reason per default
Actors can trap exit messages to handle failure manually

Build systems where all actors are alive or have collectively failed
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The Actor Model – Linking of Actors

Trapping exit messages enables:
Notification on success (normal exit reason)
Report errors back to client (non-normal exit reason)
Re-deployment of workers on (hardware) node failure
Supervising spawned workers
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Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction for developing software

Abstraction over deployment
Flexible & modular systems
Managing heterogeneous environments (but not yet on HW level)

Applies to both concurrency and distribution
Divide workload by spawning actors
Network-transparent messaging

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime
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CAF – Actors in C++11

CAF is an actor system based on C++11
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Uses internal DSL for pattern matching of messages
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CAF Core Architecture

Type System
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CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman
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CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Managed completely
by middleman
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CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Crated by using 
spawn_cl<Signature>(

kernel_source,
kernel_name,
dimensions);
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CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Crated by using one of:
spawn(fun, args…);

spawn<Impl>(ctor_args…);

8/8
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Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=]( Key k, Val v) { },
on(atom("get"), arg_match)
>> [=]( Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation
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API – Creating Actors

// args: constructor arguments for Impl
template <class Impl ,

spawn_options Os = no_spawn_options ,
typename ... Ts >

actor spawn(Ts &&... args);

// args: functor followed by its arguments
template <spawn_options Os = no_spawn_options ,

typename ... Ts >
actor spawn(Ts &&... args);

Create actors from either functors or classes
Spawn options can be used for monitoring, detaching, etc.
Creates event-based actors per default
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API – Event-based Actor Class

class event_based_actor : ... {

template <typename ... Ts>
void send(actor whom , Ts&&... what);

template <typename ... Ts>
response_handle sync_send(actor whom , Ts &&... what);

void become(behavior bhvr);

void quit(uint32_t reason );

// ...

};

Base for class-based actors
Type of implicit self pointer for functor-based actors
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API – Remote Communication

// makes actor accessible via network
void publish(actor whom , uint16_t port);

// get handle to remotely running actor
actor remote_actor(std:: string host , uint16_t port);

Message passing is network transparent
Both local and remote actors use handles of type actor

Network primitives not exposed to programmer
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Example

behavior math_server () {
return {

[]( int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=]( int result ){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server ));
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incoming messages (used until 

replaced or actor is done)
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Example

behavior math_server () {
return {

[]( int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=]( int result ){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server ));

send a message and then 
wait for response

 (using a "one-shot handler")
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Example

behavior math_server () {
return {

[]( int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=]( int result ){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server ));

this actor "loops" forever
(or until it is forced to quit)
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Example

behavior math_server () {
return {

[]( int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=]( int result ){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server ));

this actor sends one 
message and receives one 

messages
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Example

behavior math_server () {
return {

[]( int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=]( int result ){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server ));

spawn server & client
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Serialization in CAF

Non-intrusive serialization backend
User-defined types need to be announced
POD-like data: pointer to members or getter + setter
Complex data: implementation of custom uniform_type_info

All announced types can use caf::to_string
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Serialization in CAF – PODs

struct foo {
std::vector <int > a;
int b;

};
// required by announce ()
bool operator ==( const foo& lhs , const foo& rhs) {

return lhs.a == rhs.a
&& lhs.b == rhs.b;

}
int main(int , char **) {

announce <foo >(&foo::a, &foo::b);
// ...

}
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Patterns for Actor Programming

Spawn one actor per task, keep individual actors simple
Compose complex behavior out of small, easily testable actors
Push stateful operations to new actors
Use “recursive” message loops (no stack overflow possible)
Do not block indefinitely, define “continuation points”
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Interruptible Computation

// adds numbers [i, last) unless ’stop’ is received
void counter(event_based_actor* self , actor client ,

size_t value , size_t i, size_t last) {
if (i == last) {

self ->send(client , value);
self ->quit ();
return;

}
self ->become(

on(atom("stop")) >> [=] {
self ->quit ();

},
after(std:: chrono :: seconds (0)) >> [=] {

counter(self , client , value + i, i + 1, last);
}

);
}
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Thank you for your attention!

Home page: http://actor-framework.org

Sources: https://github.com/actor-framework/actor-framework
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