
.

. CAF – A Short Introduction

Dominik Charousset
dominik.charousset@haw-hamburg.de

iNET RG, Department of Computer Science
Hamburg University of Applied Sciences

October 2014

The Problem With Implicit Sharing

When writing concurrent programs:
Stateful objects need to be synchronized (if shared)
Developer is responsible for thread-safety
Challenges are ...

Race conditions (“solved” by locks)
Deadlocks/Lifelocks (caused by locks)
Poor scalability due to queueing (Coarse-Grained Locking)
Very high complexity (Fine-Grained Locking)

Time-dependent errors make testing (almost) impossible
⇒ Expert knowledge & experience required

Dominik Charousset iNET – HAW Hamburg 2

The Problem With Implicit Sharing

When writing concurrent programs:
Stateful objects need to be synchronized (if shared)
Developer is responsible for thread-safety
Challenges are ...

Race conditions (“solved” by locks)
Deadlocks/Lifelocks (caused by locks)
Poor scalability due to queueing (Coarse-Grained Locking)
Very high complexity (Fine-Grained Locking)

Time-dependent errors make testing (almost) impossible
⇒ Expert knowledge & experience required

Dominik Charousset iNET – HAW Hamburg 2

Compose Synchronized Classes

class Subject {
public:
void subscribe(function <void(int)> fun) {

unique_lock <mutex > guard{m_mtx};
m_subscribers.push_back(move(fun));

}
void broadcast(int value) {

unique_lock <mutex > guard{m_mtx};
for (auto& s : m_subscribers) s(value);

}
private:
mutex m_mtx;
vector <function <void(int)>> m_subscribers;

};

Dominik Charousset iNET – HAW Hamburg 3

Compose Synchronized Classes

class FooBar {
public:
void foo(Subject* s) {

unique_lock <mutex > guard{m_mtx};
m_subjects.push_back(s);
s->subscribe ([=](int v) {

/*...*/ bar(v); /*...*/
});
// ...

}
void bar(int value) {

unique_lock <mutex > guard{m_mtx};
// ...

}
private:
vector <Subject*> m_subjects;
mutex m_mtx;

};

Dominik Charousset iNET – HAW Hamburg 4

Compose Synchronized Classes

Thread1 Thread2

Subject
s

FooBar
fb

Dominik Charousset iNET – HAW Hamburg 5

Compose Synchronized Classes

Thread1 Thread2

Subject
s

FooBar
fb

Functor
f

subscribe(f)

[](int val) {

 fb.bar();

}

Dominik Charousset iNET – HAW Hamburg 5

Compose Synchronized Classes

Thread1 Thread2

FooBar
fb

Functor
f

broadcast(42)

foo()

 operator()(42)

Subject
s

Dominik Charousset iNET – HAW Hamburg 5

Compose Synchronized Classes

Thread1 Thread2

Functor
f

broadcast(42)

foo()

 operator()(42)

 bar()

su
bs

cr
ib

e(
..

.)
Subject

s

FooBar
fb

Dominik Charousset iNET – HAW Hamburg 5

Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
– Rich Hickey

Libraries with threads & locks are no longer black boxes
Composition of two thread-safe classes can deadlock
User has to know about implementation details:

Which code runs asynchronously/where?
Which functions are “thread-safe”?
Which function uses which lock?

⇒ Abstraction of OO programming unfolds

Dominik Charousset iNET – HAW Hamburg 6

Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
– Rich Hickey

Libraries with threads & locks are no longer black boxes
Composition of two thread-safe classes can deadlock
User has to know about implementation details:

Which code runs asynchronously/where?
Which functions are “thread-safe”?
Which function uses which lock?

⇒ Abstraction of OO programming unfolds

Dominik Charousset iNET – HAW Hamburg 6

Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
– Rich Hickey

Libraries with threads & locks are no longer black boxes
Composition of two thread-safe classes can deadlock
User has to know about implementation details:

Which code runs asynchronously/where?
Which functions are “thread-safe”?
Which function uses which lock?

⇒ Abstraction of OO programming unfolds

Dominik Charousset iNET – HAW Hamburg 6

The Actor Model

Actors are concurrent entities, that ...
Communicate via message passing
Do not share state
Can create (“spawn”) more actors
Can monitor other actors

Dominik Charousset iNET – HAW Hamburg 7

The Actor Model – Programming Model

case 1

input: M pattern 1 matched M

case 2pattern 2 matched M

else

receive
next

message

case Npattern N matched M

else

else

Actor Programming is Message-Oriented Programming
Actors are active objects
No direct method invocation, only messages
Messages passing hides location of receiver
Receiver pattern matches on content of incoming messages

Dominik Charousset iNET – HAW Hamburg 8

The Actor Model – Linking of Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()

Dominik Charousset iNET – HAW Hamburg 9

The Actor Model – Linking of Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()

Actors can link their lifetime
Errors are propagated through exit messages
When receiving an exit message:

Actors fail for the same reason per default
Actors can trap exit messages to handle failure manually

Build systems where all actors are alive or have collectively failed

Dominik Charousset iNET – HAW Hamburg 9

The Actor Model – Linking of Actors

Trapping exit messages enables:
Notification on success (normal exit reason)
Report errors back to client (non-normal exit reason)
Re-deployment of workers on (hardware) node failure
Supervising spawned workers

Dominik Charousset iNET – HAW Hamburg 10

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction for developing software

Abstraction over deployment
Flexible & modular systems
Managing heterogeneous environments (but not yet on HW level)

Applies to both concurrency and distribution
Divide workload by spawning actors
Network-transparent messaging

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 11

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction for developing software

Abstraction over deployment
Flexible & modular systems
Managing heterogeneous environments (but not yet on HW level)

Applies to both concurrency and distribution
Divide workload by spawning actors
Network-transparent messaging

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 11

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction for developing software

Abstraction over deployment
Flexible & modular systems
Managing heterogeneous environments (but not yet on HW level)

Applies to both concurrency and distribution
Divide workload by spawning actors
Network-transparent messaging

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 11

Benefits of the Actor Model

High-level, explicit communication between SW components
Robust software design: No locks, no implicit sharing
High level of abstraction for developing software

Abstraction over deployment
Flexible & modular systems
Managing heterogeneous environments (but not yet on HW level)

Applies to both concurrency and distribution
Divide workload by spawning actors
Network-transparent messaging

Provides strong failure semantics
Hierarchical error management
Re-deployment at runtime

Dominik Charousset iNET – HAW Hamburg 11

CAF – Actors in C++11

CAF is an actor system based on C++11
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Uses internal DSL for pattern matching of messages

Dominik Charousset iNET – HAW Hamburg 12

CAF – Actors in C++11

CAF is an actor system based on C++11
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Uses internal DSL for pattern matching of messages

Dominik Charousset iNET – HAW Hamburg 12

CAF – Actors in C++11

CAF is an actor system based on C++11
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Uses internal DSL for pattern matching of messages

Dominik Charousset iNET – HAW Hamburg 12

CAF – Actors in C++11

CAF is an actor system based on C++11
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW
Multi-core systems

Uses internal DSL for pattern matching of messages

Dominik Charousset iNET – HAW Hamburg 12

CAF Core Architecture

Type System

1/8

Dominik Charousset iNET – HAW Hamburg 13

CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

2/8

Dominik Charousset iNET – HAW Hamburg 13

CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

3/8

Dominik Charousset iNET – HAW Hamburg 13

CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

4/8

Dominik Charousset iNET – HAW Hamburg 13

CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Message Passing Layer

Proxy Actor
Local (CPU) Actor

Cooperative Scheduler

OpenCL Actor Facade

OpenCL Binding

5/8

Dominik Charousset iNET – HAW Hamburg 13

CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Managed completely
by middleman

6/8

Dominik Charousset iNET – HAW Hamburg 13

CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Crated by using
spawn_cl<Signature>(

kernel_source,
kernel_name,
dimensions);

7/8

Dominik Charousset iNET – HAW Hamburg 13

CAF Core Architecture

Type System

Pattern Matching EngineSerialization Layer

Middleman

Cooperative Scheduler

OpenCL Binding

Proxy Actor
Local (CPU) Actor

OpenCL Actor Facade

Message Passing Layer

Crated by using one of:
spawn(fun, args…);

spawn<Impl>(ctor_args…);

8/8

Dominik Charousset iNET – HAW Hamburg 13

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)
>> [=](Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 14

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)
>> [=](Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 14

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)
>> [=](Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 14

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)
>> [=](Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 14

API – Creating Actors

// args: constructor arguments for Impl
template <class Impl ,

spawn_options Os = no_spawn_options ,
typename ... Ts >

actor spawn(Ts &&... args);

// args: functor followed by its arguments
template <spawn_options Os = no_spawn_options ,

typename ... Ts >
actor spawn(Ts &&... args);

Create actors from either functors or classes
Spawn options can be used for monitoring, detaching, etc.
Creates event-based actors per default

Dominik Charousset iNET – HAW Hamburg 15

API – Event-based Actor Class

class event_based_actor : ... {

template <typename ... Ts>
void send(actor whom , Ts&&... what);

template <typename ... Ts>
response_handle sync_send(actor whom , Ts &&... what);

void become(behavior bhvr);

void quit(uint32_t reason);

// ...

};

Base for class-based actors
Type of implicit self pointer for functor-based actors

Dominik Charousset iNET – HAW Hamburg 16

API – Remote Communication

// makes actor accessible via network
void publish(actor whom , uint16_t port);

// get handle to remotely running actor
actor remote_actor(std:: string host , uint16_t port);

Message passing is network transparent
Both local and remote actors use handles of type actor

Network primitives not exposed to programmer

Dominik Charousset iNET – HAW Hamburg 17

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=](int result){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

Dominik Charousset iNET – HAW Hamburg 18

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=](int result){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

return message handler for
incoming messages (used until

replaced or actor is done)

Dominik Charousset iNET – HAW Hamburg 18

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=](int result){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

send a message and then
wait for response

 (using a "one-shot handler")

Dominik Charousset iNET – HAW Hamburg 18

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=](int result){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

this actor "loops" forever
(or until it is forced to quit)

Dominik Charousset iNET – HAW Hamburg 18

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=](int result){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

this actor sends one
message and receives one

messages

Dominik Charousset iNET – HAW Hamburg 18

Example

behavior math_server () {
return {

[](int a, int b) {
return a + b;

}
};

}
void math_client(event_based_actor* self , actor ms) {

sync_send(ms , 40, 2). then(
[=](int result){

cout << "40 + 2 = " << result << endl;
}

);
}
// spawn(math_client , spawn(math_server));

spawn server & client

Dominik Charousset iNET – HAW Hamburg 18

Serialization in CAF

Non-intrusive serialization backend
User-defined types need to be announced
POD-like data: pointer to members or getter + setter
Complex data: implementation of custom uniform_type_info

All announced types can use caf::to_string

Dominik Charousset iNET – HAW Hamburg 19

Serialization in CAF – PODs

struct foo {
std::vector <int > a;
int b;

};
// required by announce ()
bool operator ==(const foo& lhs , const foo& rhs) {

return lhs.a == rhs.a
&& lhs.b == rhs.b;

}
int main(int , char **) {

announce <foo >(&foo::a, &foo::b);
// ...

}

Dominik Charousset iNET – HAW Hamburg 20

Patterns for Actor Programming

Spawn one actor per task, keep individual actors simple
Compose complex behavior out of small, easily testable actors
Push stateful operations to new actors
Use “recursive” message loops (no stack overflow possible)
Do not block indefinitely, define “continuation points”

Dominik Charousset iNET – HAW Hamburg 21

Patterns for Actor Programming

Spawn one actor per task, keep individual actors simple
Compose complex behavior out of small, easily testable actors
Push stateful operations to new actors
Use “recursive” message loops (no stack overflow possible)
Do not block indefinitely, define “continuation points”

Dominik Charousset iNET – HAW Hamburg 21

Patterns for Actor Programming

Spawn one actor per task, keep individual actors simple
Compose complex behavior out of small, easily testable actors
Push stateful operations to new actors
Use “recursive” message loops (no stack overflow possible)
Do not block indefinitely, define “continuation points”

Dominik Charousset iNET – HAW Hamburg 21

Patterns for Actor Programming

Spawn one actor per task, keep individual actors simple
Compose complex behavior out of small, easily testable actors
Push stateful operations to new actors
Use “recursive” message loops (no stack overflow possible)
Do not block indefinitely, define “continuation points”

Dominik Charousset iNET – HAW Hamburg 21

Patterns for Actor Programming

Spawn one actor per task, keep individual actors simple
Compose complex behavior out of small, easily testable actors
Push stateful operations to new actors
Use “recursive” message loops (no stack overflow possible)
Do not block indefinitely, define “continuation points”

Dominik Charousset iNET – HAW Hamburg 21

Interruptible Computation

// adds numbers [i, last) unless ’stop’ is received
void counter(event_based_actor* self , actor client ,

size_t value , size_t i, size_t last) {
if (i == last) {

self ->send(client , value);
self ->quit ();
return;

}
self ->become(

on(atom("stop")) >> [=] {
self ->quit ();

},
after(std:: chrono :: seconds (0)) >> [=] {

counter(self , client , value + i, i + 1, last);
}

);
}

Dominik Charousset iNET – HAW Hamburg 22

Thank you for your attention!

Home page: http://actor-framework.org

Sources: https://github.com/actor-framework/actor-framework

Dominik Charousset iNET – HAW Hamburg 23

