
TCP/ICN: Carrying TCP over Content Centric
and Named Data Networks

Ilya Moiseenko
Cisco Systems

ilmoisee@cisco.com

Dave Oran
Cisco Systems

oran@cisco.com

ABSTRACT
Today’s Internet applications and protocols are not compatible with
Information Centric Networking (ICN) protocols and there is no
straightforward way of rapidly switching protocol architectures.
Network operators incrementally deploying an ICN infrastructure
will have to provide compatibility with existing TCP/IP applica-
tions and manage co-existence of IP and ICN networks. One ap-
proach to co-existence is to allow TCP and the applications using
it to work transparently over an ICN substrate instead of over IP.
This paper presents a TCP/ICN proxy capable of carrying TCP
traffic between TCP/IP endpoints over ICN network. The main
challenge for this approach to co-existence is transforming the TCP
push model to the ICN pull model. We evaluated several alternative
TCP/ICN proxy designs in a simulation environment. We chose the
most promising of these designs and developed a proof-of-concept
*nix implementation. Performance measurements of both simula-
tion and real implementation demonstrate that with our proxy de-
sign TCP can traverse ICN networks without significant additional
delay or loss of goodput.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]: Archi-
tecture and Design; Network Protocols; Distributed Systems

Keywords
ICN; NDN; CCN; TCP; interoperability; co-existence

1. INTRODUCTION
Content Centric Networking (CCN) and Named Data Network-

ing (NDN) are two related general-purpose, information-centric
network (ICN) architectures [1, 2]. Both use a pull-based stateful
forwarding model: clients send requests into the network to fetch
data; network nodes keep the state of the forwarded requests; data
replies follow the symmetric reverse path using the network state;
no other unsolicited data transmission is allowed.

The change of addressing from host-based to the flexible content-
based scheme and the change of the network model from push to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICN’16, September 26-28, 2016, Kyoto, Japan
c© 2016 ACM. ISBN 978-1-4503-4467-8/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2984356.2984357

pull are the two primary obstacles in adapting IP applications and
protocols for NDN and CCN networks. At first glance it might
seem that modern web applications can be easily adapted to work
with ICN networks, because NDN/CCN pure pull-based communi-
cation model seems to match the request-reply mechanics of HTTP
interactions. However, CCN/NDN networks do not have the proto-
cols equivalent to TCP, TLS, etc. [3], and even if there were any,
such adaptation would require changes in the application source
code, library linkages, etc.

Even if ICN technology succeeds as an attractive replacement for
IP as the spanning layer of the Internet, IP and ICN networks may
need to co-exist for a long transition period. Co-existence of IP
and ICN networks includes the following scenarios: (1) ICN end-
points communicating over an IP network, (2) IP endpoints com-
municating over an ICN network, and (3) an IP endpoint commu-
nicating with the peer ICN endpoint over an ICN or IP network.
The ICN research community understands reasonably well how to
build an ICN overlay (scenario 1) over an IP network, but the prob-
lem of legacy IP application support remains open. Since there is
no straightforward way for application developers to quickly adapt
existing software to ICN networks, this paper focuses on scenario 2.

A vast number of applications and protocols use TCP: web brows-
ing (HTTP 1.1), email (SMTP/POP, IMAP), routing (BGP), DNS
(optionally), etc. Therefore, it is essential for network operators
deploying ICN in their infrastructure to provide backward compat-
ibility with TCP/IP applications.

This paper examines three alternative designs for a TCP/ICN
proxy capable of transparently carrying TCP traffic between TCP/IP
endpoints over an ICN network. The main challenge any TCP/ICN
translation proxy faces is how to reconcile the TCP/IP push model
with the ICN pull model. Within this context, there are a number
of associated design tradeoffs, such as how to minimize inflation of
message count and message sizes, how much the translation func-
tion needs to understand the TCP state machine, whether and how
to preserve TCP’s true end-to-end reliable delivery guarantees, and
how to marry the ICN and TCP congestion and flow control mod-
els.

The remainder of the paper is structured as follows. Section 2
discusses common protocol migration methods using IPv4-to-IPv6
transition strategies as analogous use cases. It also compares the
needs of translation with the similar issues faced by TCP perfor-
mance enhancing proxies. In Section 3, we describe and analyze
three alternative designs for inter-proxy ICN protocols carrying
TCP semantics. Section 4 provides the measurements from our
simulation and proof-of-concept implementation models. In Sec-
tion 5, we conclude and discuss future work.

112

http://dx.doi.org/10.1145/2984356.2984357

2. RELATED WORK
Techniques for migrating from one protocol family to another

have been a source of many design paradigms over the years, how-
ever two have dominated: protocol translation and tunneling. As
examples of we briefly discuss approaches in the case of migration
from IPv4 to IPv6, which are very similar as opposed to the more
substantial differences between IP and ICN.

In the case of IPv4/IPv6 migration, both translation and tunnel-
ing approaches have been employed. Translation is accomplished
by having a special translation service rewriting IP headers on the
border of IPv4 and IPv6 networks. It is possible to have stateless
translation (e.g. SIIT [4]) if IPv4 addresses are deterministically
mapped to IPv6 addresses. Stateful translation (e.g. NAT-64 [5])
is necessary if IPv4 and IPv6 address binding has to be resolved.
Translation in the IPv4-to-v6 case can deal with all the scenarios
we outlined in the introduction for co-existence because the proto-
col semantics are essentially unchanged.

Tunneling has also been extensively employed for IPv4/IPv6 co-
existence and achieves heterogeneous traversal, for example, IPv4
traffic over an IPv6 network [6]. The basic machinery of tunneling
is to have two tunnel endpoints on the borders of heterogeneous
networks. When the ingress endpoint receives an IPv4 packet, it
encapsulates it with IPv6 protocol header and puts the whole IPv4
packet in the payload of the new IPv6 packet. Then the IPv6 packet
is forwarded through the IPv6 network. When the egress endpoint
receives the IPv6 packet, it decapsulates the packet and forwards
the original IPv4 packet towards the IPv4 endpoint.

While IPv4-to-IPv6 transition technologies only needed solve
the heterogeneous addressing problem, IP-to-ICN transition tech-
nologies have to deal with substantially different protocol seman-
tics. Simple tunneling cannot overcome the substantial state ma-
chine differences between TCP’s sender-based push semantics and
ICN’s receiver-driven pull semantics. Some form of translation is
needed. Conversely, translation alone often fails to maintain the
level of transparency needed for the parts of the protocol unaffected
by the state machine differences, hence tunneling is used for those
protocol elements to ensure transparency where needed.

Other related work includes performance-enhancement proxies
(PEPs) such as split TCP [7, 8]. A split TCP system terminates the
TCP connection received from one TCP endpoint and establishes
a corresponding TCP connection to another TCP endpoint. This is
typically done to allow the use of a third connection between two
PEPs, which could either be a TCP connection optimized for the
link or a proprietary protocol running on top of UDP.

There is not much prior work in the area of IP-to-ICN transition
and co-existence. Trossen et al. proposed to use PURSUIT ICN
as an underlay for IP/TCP/HTTP-based services to achieve better
utilization in HTTP unicast scenarios, better network management,
and fairer content distribution [9]. We tend to agree that an ICN
underlay might make some things better for IP-based services, and
offer our TCP proxy approach as one promising direction to pur-
sue.

3. TCP/ICN DESIGN ALTERNATIVES
Our design approach is to carry TCP over an ICN infrastruc-

ture by inserting a translation+tunneling proxy at the entry and exit
points of the ICN network. The entry and exit proxies perform
complementary functions. A forward proxy performs translation
functions needed to express TCP semantics to the ICN network
and encapsulates TCP/IP segments into Interest and Data packets
for tunneling over the ICN infrastructure. A reverse proxy pro-

cesses the ICN pull-based state machine and decapsulates Interest
and Data packets back to TCP/IP segments. This section states our
design goals, provides a detailed description of inter-proxy proto-
cols, and discusses the trade-offs of each design.

3.1 High-level design goals
The objective of this work is to find the solution satisfying the

following principles and goals.

3.1.1 Unaltered TCP/IP stack and applications
Any existing TCP/IP application ranging from an interactive lo-

gin to high throughput secure web browsing must continue to work
without modification to its source code. No modifications to either
the code or configuration of the TCP/IP stack hosting the applica-
tions can be required. Additionally, the TCP/ICN proxy must work
correctly with the various TCP congestion control schemes.

3.1.2 Preserve TCP end-to-end semantics
Unlike a proxy in a split TCP system that terminates a TCP

connection, our goal is to carry TCP semantics correctly end to
end. Split TCPs try to improve TCP performance by (among other
things) pre-acknowledging TCP segments before the actual TCP
reader. This can in some cases increase the throughput by reduc-
ing the feedback RTT, but takes away TCP end-to-end semantics.
All TCP/ICN proxy designs discussed in this paper preserve end-
to-end semantics and do not use pre-acknowledgment.1 Therefore,
we believe we can make fair performance comparisons between
TCP over an ICN network and native TCP/IP.

3.1.3 Pull data between proxies
Pushing TCP data in Interest packets might seem to be the most

straightforward approach, but it is at odds with the architectural
tenets of CCN and NDN, and leads to several major problems. If
a TCP flow is mapped to Interest-Data exchanges where TCP data
is encapsulated in Interest packets and TCP acknowledgements in
Data packets, it would require ICN forwarders to have special-
ized congestion control, fragmentation, and ARQ schemes to ef-
fectively deal with heavyweight Interest packets and lightweight
Data packets. Alternatively, if a TCP flow is mapped to Interest-
Interest exchanges with no closure via Data packets, then it would
have the same problems with congestion control, fragmentation,
and ARQ, while introducing an additional difficulty for Denial-of-
Service mitigation techniques based on assessing Interest satisfac-
tion rates [10, 11].

Therefore, for all of our design variants we follow the intended
ICN principle that TCP data is requested by Interest packets and
returned in Data packets. This allows our designs to benefit from
useful properties of ICN networks such as one-to-one flow balance,
multi-path Interest forwarding, etc., that can potentially improve
the performance and robustness of TCP.

3.1.4 No requirement for longest prefix match in the
PIT

The designed inter-proxy ICN protocol must use a deterministic
naming scheme and cannot rely on Interests carrying incomplete
names (e.g. missing TCP sequence numbers, etc.), because we de-
sire a protocol that is compatible with both the NDN and CCN
architectures.

1If relaxing TCP semantics is acceptable in some settings, pre-
acknowledgment functionality could certainly be added.

113

Forward proxy

Interest with TCP/IP headers

Reverse proxy

Data carrying TCP payload

1	

2	

3	

4	 Interest pulling data

5	

6	

Data	 cache	

Unidirectional TCP flow

TCP	 data	 	
segment	

TCP	 data	 	
segment	

TCP	 	
ACK	

TCP	 	
ACK	

Interest with TCP/IP headers

TCP receiver TCP sender

Figure 1: Basic fetching proxy design and operation.

3.1.5 Minimize overhead
We attempt to ameliorate any negative impact of the inter-proxy

ICN protocol on TCP goodput by minimizing both message size
and message count. To allow proxies to be low overhead and scale
to large numbers of TCP connections, we minimize the amount of
state and computational work the TCP/ICN proxy has to perform
for each TCP connection.

3.2 Non-goals
The present work focuses on the performance aspects of TCP-

over-ICN, however, it is important to mention some of the remain-
ing co-existence and deployment related issues.

3.2.1 Support of IP or other transport protocols
The design of inter-proxy protocols relies on TCP-specific proto-

col headers and the specific connection-oriented features of TCP. It
is potentially possible to apply similar techniques to support other
connection-oriented transport protocols (e.g. SCTP), but it is not
yet clear how to use such techniques for raw IP or UDP datagram
protocols.

3.2.2 Heterogeneous addressing and routing
TCP applications continue using their usual destination and source

IP addresses and ports. Network operators can redirect TCP/IP
traffic towards TCP/ICN proxies using such standard techniques
as NAT, SOCKS [12], etc.

TCP/ICN proxies are similar to PEPs in maintaining some amount
of state about the ongoing TCP connection and in the necessity of
locking the TCP connection to a specific proxy. In order to consis-
tently forward Interest and Data messages between the appropriate
proxies, TCP/ICN proxies must own routable ICN names which are
used as name prefixes for outgoing Interest and Data messages. It
is possible to use name prefixes that are algorithmically mapped to
the IP addresses. Another option is to have a name prefix lookup
process similar to the reverse DNS lookup in order to match a des-
tination IP address to the prefix of the corresponding proxy.

3.2.3 Path MTU-discovery and fragmentation
We assume that TCP/ICN proxies enforce standard 1500-byte

MSS for TCP/IP applications and can use jumbo-sized ICN Data
packets (e.g. 8KB). Our designs may in some cases not work well
for cases needing path MTU discovery over heterogeneous net-
works.

3.3 Basic fetching proxy
A “Notify-then-pull” mechanism realized via Interest-Interest-

Data packet exchange is the basic way of emulating push semantics
over an NDN / CCN network. An entity willing to push the data
notifies another entity that data is ready to be pulled. Part of the

design therefore is adherence to specific naming conventions so that
names are predictable for both proxies processing the packets.

The primary benefit of a TCP proxy design based solely on a
“notify-then-pull” mechanism is its simplicity. Both proxies main-
tain only the minimum amount of state about each TCP connec-
tion, and are not required to run any complicated time- or state-
synchronized inter-proxy protocol or handle any of the special cases
that arise in the TCP state machines.

3.3.1 Inter-proxy protocol operation
The transcript of protocol operation for the basic fetching proxy

corresponds to the numbers in the Figure 1.

1. When a TCP segment arrives at the forward proxy, the proxy
checks whether the segment is carrying a payload. In such
case, the information in TCP/IP headers is used to construct
the name of a new Interest packet.2 The original TCP/IP seg-
ment is placed in the payload of a corresponding new Data
packet (i.e. encapsulated in ICN Data packet).

2. We use the following naming convention for Data packets
carrying TCP segments with payload:

/[forward-proxy-prefix]/[TCP-4-tuple]/[TCP-
sequence-number]/[Wraparound-number]

forward-proxy-prefix is the routable name prefix of
the proxy that has received TCP segment. The TCP-4-tuple
name component(s) includes source IP, source port, destina-
tion IP and destination port, which are necessary for TCP
connection identification by the proxy. The TCP-sequence-
number name component exactly matches the sequence num-
ber of the corresponding TCP segment. Since the binding of
data to names in NDN and CCN is not mutable, Wraparound-
number is necessary to prevent name collisions when the
TCP sequence number wraps around. We considered the use
of TCP timestamps for versioning purposes, but preferred se-
quential versioning scheme, because TCP timestamps can be
disabled on some hosts. In a sequential versioning scheme,
both proxies detect wraparound events independently and in-
crement the wrap-around number each time it occurs.

3. We use the following naming convention for Interest packets
carrying only TCP/IP headers with no payload:

/[rev-proxy-prefix]/[TCP-IP-headers]/[nonce]

rev-proxy-prefix is the routable name prefix of the re-
verse proxy decapsulating Interest and Data packets into TCP/IP
segments. TCP-IP-headers carry all TCP/IP headers in-
cluding all options. nonce is a random number that ensures

2In the CCN architecture, TCP/IP headers can be placed in the In-
terest payload field instead of the name.

114

the uniqueness of the Interest necessary for preventing ICN
forwarders from suppressing duplicate ACK transmissions
sent by TCP receivers. Instead of a nonce one could use the
signature of the Interest for uniqueness. This would provide
additional protection of the inter-proxy protocol against ma-
licious senders generating ‘fake’ Interests in order to disrupt
the operation of the protocol.

4. If an Interest arriving at the reverse proxy carries TCP/IP
headers indicating there is accompanying TCP data to be
pulled, the reverse proxy transmits a ‘reflexive’ Interest packet
with the name that is guaranteed to match the Data packet
stored in the cache of the forward proxy. The reverse proxy
does not enforce reliability, therefore TCP endpoints con-
tinue to be responsible for recovering data loss, just as they
do when running over IP.

5. When a forward proxy receives the reflexive Interest packet,
it attempts to find matching Data packet in its Data cache.

6. When the reverse proxy receives a Data packet, it transmits
the decapsulated TCP segment over IP to the TCP receiver.

3.3.2 Quick analysis of the protocol
This basic protocol does not demand a lot of memory or pro-

cessing resources, but it is unreasonable to expect good TCP per-
formance, because the number of packets and round-trips are both
doubled. Potential benefits of Data packet caching at intermediate
forwarders had not fully materialized as discussed in Section 4.

Connection setup. The TCP three-way handshake maps to an
equivalent three-way Interest exchange (Figure 2) with both proxies
going through a series of initialization states.3 It is beneficial to use
only Interests in the TCP setup phase, because the corresponding
Data messages can be saved for the purpose of delivering the actual
TCP data.

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>
SYN flag

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>
SYN, ACK flags

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>
ACK flag

/verizon

/att

/verizon

Figure 2: ICN message sequence for TCP connection setup.

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>
FIN flag

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>
ACK flag

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>
ACK flag

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>
FIN flag

/verizon

/att

/att

/verizon

Figure 3: ICN message sequence for TCP connection teardown.
3TCP “Christmas tree” segments or single segment sessions (i.e.
SYN/Data/FIN/ACK) are not supported by our protocol at this
time.

Connection teardown. Analogously, the TCP 4-way teardown
maps to an equivalent 4-way Interest exchange (Figure 3) with both
proxies going through a series of termination states.

It is important to note that the same Interest exchanges for TCP
connection setup/teardown are used in other inter-proxy ICN pro-
tocols described in this paper.

Full duplex connection. In the unidirectional data transfer sce-
nario, each TCP Data-ACK exchange results in an Interest-Interest-
Data-Interest exchange. In the bidirectional data transfer scenario,
each TCP Data-Data exchange results in an Interest-Interest-Data-
Interest-Interest-Data exchange leading to 3x packet count expan-
sion over native TCP/IP.

3.4 Reliable prefetching proxy
The results of experimentation with the basic proxy design mo-

tivated us to look for a more advanced solution with a more ef-
ficient inter-proxy control protocol. One improvement is for the
reverse proxy to maintain a window of outstanding Interest packets
in such a manner that whenever the forward proxy receives a TCP
data segment there is an outstanding Interest at the proxy which
could be matched with ICN Data packet for the TCP segment in
response. Compared to basic fetching, prefetching reduces latency
and decreases the number of packet transmissions. This scheme
is ‘reliable’ in the sense that the reverse proxy ensures successful
delivery of all requested Data packets from the forward proxy. Reli-
able prefetching can also conceal packet losses in the ICN network
infrastructure from TCP endpoints, which can potentially improve
TCP throughput by avoiding TCP retransmissions.

In the basic fetching protocol, data names are mapped to TCP
sequence numbers. In the reliable prefetching protocol, data names
cannot be mapped straightforwardly to TCP sequence numbers be-
cause the reverse proxy cannot predict the progression of TCP se-
quence numbers of available Data segments at the moment when it
has to send Interest packets.4 Instead, Data names contain an in-
dependent (of the TCP sequence space) sequence name component
whose value monotonically increases for each new incoming TCP
segment (Figure 4). Such a predictable naming pattern allows re-
verse and forward proxies to have a synchronized understanding of
what packets had been produced, fetched, lost and retransmitted.5

Interest: /<routable prefix>/<connection id>/<sequence#>
TCP 4 tuple

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>

SEQ # 376523
ACK # 1225142 TCP/IP:

SEQ # 376523
ACK # 1225142

TCP/IP: SEQ # 1223682
ACK # 376523

TCP/IP: SEQ # 1225142
ACK # 376523

Forward proxy

Unidirectional TCP flow

130

Interest: /<routable prefix>/<connection id>/<sequence#>
TCP 4 tuple 129

Data: /<routable prefix>/<connection id>/<sequence#>
TCP 4 tuple 129

Data: /<routable prefix>/<connection id>/<sequence#>
TCP 4 tuple 130

Figure 4: A snapshot of ICN message sequence numbering scheme
used in the reliable prefetching protocol.

4It might be possible to predict TCP sequence numbers for bulk
transfers, because TCP segments are MSS-sized, however such
techniques will fail in other circumstances.
5As stated in our design goals, incomplete Interest names cannot
be used, because we do not wish to depend on PIT LPM.

115

Forward proxy Reverse proxy

1	

2	

3	

4	

6	

Reliable	
consumer	

Interest	
queue	

cwnd	
adver:ser	

Data	 queue	 +	 cache	 TCP	 data	 	
segment	

TCP	 data	 	
segment	

5	

TCP	 	
ACK	

TCP	 	
ACK	

Interest per each RTT

Interest pipelining w.r.t cwnd

Data carrying TCP segment

Unidirectional TCP flow

Interest with TCP/IP headers

TCP sender TCP receiver

Figure 5: Reliable prefetching proxy design and operation.

3.4.1 Inter-proxy protocol operation
The transcript of protocol operation for the reliable prefetching

scheme corresponds to the numbers in the Figure 5.

1. If an incoming TCP segment contains a payload, the whole
TCP segment is encapsulated in a Data packet carrying a
name with monotonically increasing sequence number. The
Data packet is placed in the data queue if there is no matching
Interest in the Interest queue.

/[forward-proxy-prefix]/[TCP-4-tuple]/

[sequence-number]

2. Efficient operation of the reliable prefetching protocol largely
depends on accurate estimation of the consumer’s Interest
window size. Too many outstanding Interests, possibly re-
transmitted multiple times because of being sent too early,
consume bandwidth and processing capacity. Too few out-
standing Interests will depress the TCP transmission rate by
capping the outstanding Interest count below the TCP con-
gestion window size. To give a hint to the consumer at the
reverse proxy, the forward proxy can periodically advertise
the estimated congestion window size of the TCP sender.
A number of passive and active TCP parameter estimation
heuristics can be found in the literature [13, 14]; we used a
rough estimation of congestion window size available in the
proxy by observing TCP segment arrivals, as described be-
low.

In the absence of a way to dynamically adjust the outstand-
ing Interest count, as the TCP sender’s congestion window
size increases so will the TCP segment data queue at the for-
ward proxy. The size of TCP data queue can therefore act as
surrogate to estimate the TCP congestion window size. By
advertising this periodically (e.g. once per RTT) the reverse
proxy can track the congestion window with a one-RTT de-
lay and adjust the consumer’s outstanding Interest window.

3. The consumer at the reverse proxy performs transmission of
new Interest packets and retransmission of timed out Inter-
ests. This scheme allows the ICN network to conceal packet
losses from TCP endpoints by using built-in transient caching
of Data packets in the NDN / CCN infratructure.

4. Incoming Interest packets are placed in the Interest queue
if there is no matching Data packet in the TCP data queue.
Otherwise, the Data packet is returned immediately to the
reverse proxy and may be cached at intermediate forwarders,
allowing faster recovery from loss.

5. The TCP data segment is extracted from the Data packet and
transmitted to the TCP receiver over IP.

6. TCP segments that do not carry any payload (e.g. ACK,
SYN, FIN packets, etc.) are transformed into Interest pack-
ets and do not have to be fetched separately. The namespace
design for Interest packets is identical to the one in the basic
fetching proxy.

3.4.2 Quick analysis of the protocol
The reliable prefetching protocol has an identical connection setup,

teardown, and ACK delivery mechanism to the basic fetching pro-
tocol. Only the data delivery method differs. Instead of an Interest-
Interest-Data-Interest exchange for each TCP Data - ACK exchange,
the reliable prefetching protocol uses normal Interest-Data exchange,
using an independent packet sequence numbering scheme and with
periodic advertisements of the estimated congestion window size at
the TCP sender.

Idle TCP sender. When the TCP sender is idle for more than
a few RTTs, the TCP data queue at the forward proxy becomes
empty. Through periodic advertisements, the reverse proxy infers
that the number of outstanding Interests should be reduced to zero
and only resumed when the TCP sender resumes transmission.

Full duplex connection. TCP Data-Data exchanges are realized
through both TCP/ICN proxies performing complementary steps 1
— 5 of the protocol description above with exception of step 6 due
to the absence of standalone TCP ACK packets.

Selective acknowledgements. The reliable prefetching ICN pro-
tocol cannot take advantage of TCP SACK, because ICN messages
are numbered in a separate sequence space from the TCP sequence
space, and there is no reliable way of transforming one sequence
number to another one as discussed earlier.

On paper, reliable prefetching decreases the number of transmit-
ted packets from 4 to (3 + 1/RTT) per each TCP Data-Ack, de-
creases the latency of communication, and enables fast recovery
due to the transient caching at intermediate forwarders. With our
simulation model we found out that while reliable prefetching has
better performance than basic fetching, having a separate TCP-like
control loop inside the original TCP control loop leads to higher
RTT, RTO and congestion window variation at TCP senders. Sec-
tion 4 discusses these effects in more detail. It is also likely that the
inner control loop negatively affects TCP flow fairness.

The core problem with the reliable prefetching protocol is in-
exact matching of the TCP congestion window size to the Interest
window size at the reverse proxy’s consumer, which in turn causes
a large number of Interest retransmissions. Long lived Interests in
the range of several seconds could reduce the number of unneces-

116

Forward proxy Reverse proxy

1	 2	 3	

4	 6	

Interest	
queue	

TCP	
queue	

TCP	 data	 	
segment	

TCP	 data	 	
segment	

5	

TCP	 	
ACK	

TCP	 	
ACK	

Interest with TCP/IP headers

Data carrying multiple
TCP data segments

Unidirectional TCP flow

TCP sender TCP receiver

Figure 6: Unreliable prefetching proxy design and operation.

sary retransmissions, but cannot be used in practice, because each
potential loss of a long lived Interest disrupts the TCP sender and
decreases its congestion window size. As a rule of thumb, an Inter-
est retransmission timeout ought to be smaller than TCP RTO at all
times.

Another issue with the reliable prefetching protocol occurs when
the TCP sender detects loss and retransmits a TCP segment. When
TCP endpoint retransmits a packet, the forward proxy creates new
Data packet with new sequence number. This leads to the situation
where NDN / CCN network segment has more circulating packets
than the IP network segment, causing significant overhead due to
the fact that all of these packets are reliably delivered. A potential
solution for this problem is to make the forward proxy remember
all processed TCP sequence numbers and drop retransmitted pack-
ets. However, this causes data transfer halts in the situation when
(1) ACK packet (Interest) is lost in the NDN / CCN infrastructure,
(2) the TCP sender attempts retransmission. The forward proxy
would drop such a packet since it has already processed and cached
the packet with that TCP sequence number. Conversely, the reverse
proxy would be certain that it has already fetched a Data packet
with the matching NDN/CCN sequence number. Handling such
situations would likely require acknowledging ACKs or notifying
the reverse proxy about TCP retransmissions, which furthermore
increases complexity of the system.

3.5 Unreliable prefetching proxy
Simulation of the reliable prefetching protocol demonstrated both

its advantages over non-prefetching technique and the issues in-
herent in the interplay of TCP retransmission behavior with inter-
proxy protocol machinery. A possible way of eliminating the com-
plexity of Interest window management is to clock the prefetching
process exclusively by the receipt of acknowledgements from the
TCP receiver. In other words, is it possible to transmit an Interest
only in the case when there is an incoming ACK packet from the
TCP endpoint? Is it possible to eliminate all independent Interest
retransmissions and let TCP or in-network Interest retransmission
to react to the losses instead of adding reliability to the inter-proxy
protocol?

Several problems present themselves as soon as we start work-
ing through the protocol operations. First, TCP usually acknowl-
edges only every other TCP segment due to the ubiquity of delayed
ACK optimizations. Second, the TCP sender is constantly probing
for more available bandwidth by increasing its congestion window
size. In normal circumstances the number of TCP acknowledge-
ments is usually smaller than the number of TCP data segments.
Therefore, we investigated two ways to overcome the deficit of In-
terests in order to accommodate all incoming TCP data:

• artificially inflate the number of transmitted Interests. For
example, each empty TCP ACK could be duplicated by the
reverse proxy as multiple Interests, and the forward proxy

would de-duplicate Interests to avoid invalid duplicate ACK
transmission towards the sender.

• package multiple TCP data segments in a single Data packet
to match the number of ACKs. This requires the NDN / CCN
protocol MTU to be a multiple of the negotiated TCP MSS.

As an engineering tradeoff, we concluded that packaging multi-
ple TCP data segments is the “lesser evil”; a proxy enforcing stan-
dard 1500 byte MSS to the TCP endpoints and operating with 8KB
Data packets potentially encapsulated in IP jumbo frames are not
too unrealistic assumptions to make. The other approach of inflat-
ing the number of Interest transmissions adds more complexity to
the system and has non-deterministic behavior.

3.5.1 Inter-proxy protocol operation
The transcript of protocol operation for the unreliable pre-fetching

proxy protocol corresponds to the numbers in the Figure 6.

1. A TCP segment not carrying any payload (e.g. empty ACK,
SYN-ACK, etc.) is encapsulated into an Interest according
to the same naming convention used in the basic fetching
model.

2. Incoming Interests are stored in the Interest queue until their
expiration.

3. If an Interest indicates that there is no accompanying TCP
data (e.g. empty ACK) then the proxy immediately decap-
sulates the TCP segment from the Interest and transmits it to
the TCP endpoint.

4. The TCP sender receives an ACK and transmits new data
segment(s), which arrive at the forward proxy. The forward
proxy puts the TCP data segment(s) in the TCP queue and
determines how many TCP segments must be taken from the
queue to be packaged together in a single Data packet.

5. A Data packet is created with a name that matches the name
of the oldest non-expired Interest from the Interest queue (i.e.
head-of-line).

6. The proxy receives a Data packet and passes the multiple
TCP data segments it contains to the TCP receiver over IP.

3.5.2 Quick analysis of the protocol
Unreliable prefetching is simpler and more scalable than reliable

prefetching, because it does not have an independent control loop.
The protocol does not involve transmission of any extra packets,
and in fact the number of Interest and Data packets is lower than
the number of packets in the IP network segment. This helps to
amortize ICN related overhead such as long names, packet signa-
ture, etc.

117

Idle TCP sender. Unreliable prefetching is subject to the prob-
lem of an idle TCP sender. When a TCP sender becomes idle for
a relatively long period of time all Interests in the Interest queue
in the forward proxy expire, so that when TCP sender transmits
new data the forward proxy does not have outstanding Interests in
its queue. This issue is resolved by having a “wake up” mechanism
based on an Interest-Interest-Data exchange that restarts the normal
operation of the protocol.

No application level caching. The naming model uses the orig-
inal TCP sequence numbers similarly to the basic fetching proto-
col. To allow intended duplicate ACKs to reach TCP endpoints
and avoid aggregation in NDN / CCN forwarders, and to prevent
any possible re-use of previously used names with modified content
(i.e. mutable data) every Interest name has a random value (nonce)
appended to make it unique. The negative side effect of that is the
inability to leverage application level caching in the NDN / CCN
network, however, fast Interest retransmission by the forwarder is
still viable as a recovery technique.

Time-delayed naming. An interesting observation is that the
names of Data packets do not reflect their content in a meaning-
ful way. At best, the relationship between the content (i.e. TCP
data segments) and the names can be characterized as time-shifted,
because names contain the sequence numbers used by TCP one
round-trip before. Figure 7 is a snapshot of the ICN message se-
quence numbering scheme at the moment when a forward proxy
receives an acknowledgement Interest for previous TCP segments
and uses it to transmit a Data message carrying two new TCP data
segments.

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>

SEQ # 376523
ACK # 1222222

Interest: /<routable prefix>/<TCP/IP headers>/<nonce>

SEQ # 376523
ACK # 1225142

TCP/IP:
SEQ # 376523
ACK # 1222222

TCP/IP: SEQ # 1223682
ACK # 376523

TCP/IP: SEQ # 1225142
ACK # 376523 Data: /<routable prefix>/<TCP/IP headers>/<nonce>

SEQ # 376523
ACK # 1222222

Forward proxy

Unidirectional TCP flow

Figure 7: A snapshot of ICN message sequence numbering scheme
using 1500-byte TCP MSS.

Full duplex connection. TCP piggybacks acknowledgements
in its data segments, which would result in no Interests sent by
TCP/ICN proxies without a special handling of full duplex trans-
fers. In order to recognize a bidirectional data transfer, each TCP/ICN
proxy keeps track of the highest acknowledgement number received
from the TCP endpoint up to the moment. If an incoming TCP data
segment carries a payload and has an ACK number higher than
previously recorded one, the TCP/ICN proxy must make a decision
whether an Interest should be sent towards the reverse proxy to
fetch the TCP data segments going in the opposite direction. The
decision could be as simple as “send Interest for each TCP data
segment”, but that is likely to result in too many Interests reducing
available bandwidth. Other approaches include:

• Fixed probability (e.g. send an Interest message for every
other TCP data segment – 50% probability)

• Function of the increase of acknowledgement number (e.g.
send an Interest message after the acknowledgement number
advances by a specified number of bytes.)

TCP cubic
Unreliable prefetching

Reliable prefetching
Basic fetching

0

0e+00

2e+07

4e+07

0 200 400 600

Time (ms)

TC
P

se
qu

en
ce

 n
um

be
r

a

a

a

a

Basic fetching

Reliable prefetching

TCP cubic

Unreliable prefetching

(a) TCP flow completion time.

TCP cubic
Unreliable prefetching

Reliable prefetching

Basic fetching

0

0

500

1000

1500

2000

0 200 400 600

Time (ms)

To
ta

l n
um

be
r o

f T
C

P
re

tra
ns

m
is

si
on

s
(p

ac
ke

ts
)

a

a

a

a

Basic fetching

Reliable prefetching

TCP cubic

Unreliable prefetching

(b) TCP sender retransmissions.

TCP cubic

Unreliable prefetching

Reliable prefetching

Basic fetching

0

0

20000

40000

60000

0 200 400 600

Time (ms)

C
w

nd
 (b

yt
es

)

a

a

a

a

Basic fetching

Reliable prefetching

TCP cubic

Unreliable prefetching

(c) TCP congestion window size.

Figure 8: Unidirectional TCP transfer of 50 MB over 1 Mbps 0%
loss links.

118

TCP cubic
Unreliable prefetching

Reliable prefetching

Basic fetching

0

500

1000

1500

2000

0 200 400 600

Time (ms)

RT
O

 (m
s)

a

a

a

a

Basic fetching

Reliable prefetching

TCP cubic

Unreliable prefetching

(d) TCP retransmission timeout.

Figure 8: Unidirectional TCP transfer of 50 MB over 1 Mbps 0%
loss links.

4. EVALUATION
We built a simulation model for each TCP/ICN inter-proxy pro-

tocol to understand the performance and system complexity char-
acteristics, and test various edge conditions (e.g. idle sender). We
chose the best performing inter-proxy protocol to build as a proof-
of-concept Linux/Unix implementation to explore the practical en-
gineering trade-offs.

4.1 Simulation
We used NDNsim 2.1 [15] for rapid prototyping and ease of mea-

suring of the inter-proxy protocols. NDNsim has both a mature
NDN stack and a comprehensive TCP/IP implementation with var-
ious congestion control algorithms in its NS-3 foundation. In order
to drill into the details of the protocol performance, our simulations
compare the performance of a single NS-3 TCP cubic connection
between client and server applications connected through either:

• a simple three-hop IP network (Figure 10a)

• a three-hop NDN network (Figure 10b) with a node hosting
a forward proxy and NDN forwarder, a second node hosting
only an NDN forwarder, and a third node hosting a reverse
proxy and NDN forwarder.

We computed four different metrics over two types of simula-
tion runs: 1) 1 Mbps links with 0% packet loss 2) 1 Mbps links
with 1% packet loss. The most important metric from the user’s
perspective for most TCP flows is the flow completion time (FCT).
We assess sender retransmissions to understand whether TCP per-
formance is negatively impacted by higher RTTs or packet drops
/ timeouts. Tracking Instantaneous TCP congestion window size
and TCP retransmission timeout (RTO) metrics allows us to detect
any potential TCP flow instabilities caused by the inter-proxy ICN
protocol.

Analyzing the results of 0% and 1% packet loss simulation runs
in Figures 8 and 9, we can see that the basic fetching inter-proxy
protocol slows down TCP cubic by at least 50% (Figure 8a). The
primary reason for the slowdown is that TCP retransmissions (Fig-
ure 8b) are limiting the congestion window size. The root cause

TCP cubic
Unreliable prefetching

Reliable prefetching Basic fetching

0

0e+00

2e+07

4e+07

0 500 1000 1500 2000

Time (ms)

TC
P

se
qu

en
ce

 n
um

be
r

a

a

a

a

Basic fetching

Reliable prefetching

TCP cubic

Unreliable prefetching

Figure 9: Flow completion time of 50 MB unidirectional TCP
transfer over 1 Mbps 1% loss links.

is the doubled number of packets in the ICN network for the basic
inter-proxy approach. TCP RTO is high at all times due to the 2RTT
Interest-Interest-Data exchanges in the basic inter-proxy protocol.

The reliable prefetching protocol has much better flow comple-
tion times due to the reduction of TCP retransmissions (Figure 8b).
Figures 8c and 8d show that this protocol exhibits instability of
congestion window size and retransmission timer. We failed to ad-
equately synchronize the TCP control loop with the inner prefetch-
ing loop in spite of significant effort spent on tuning the prefetching
protocol. This is a major issue, and while it might be possible to
achieve higher level of synchrony between the two control loops,
we have concluded that this design does not have much promise
for good performance and robust behavior under varying network
conditions.

The simulations show conclusively that the unreliable prefetch-
ing ICN protocol demonstrates superior performance across all four
metrics. Its flow completion time is within 8% - 10% of that achieved
by TCP cubic over the IP network; the number of retransmissions
is almost identical to TCP/IP; the congestion window size is high
and stable at all times; TCP RTO measurements are stable and al-
most identical to TCP/IP. The only negative side-effect of the unre-
liable prefetching ICN protocol appears with packet losses in ICN
network segment. Figure 9 shows that unreliable prefetching falls
behind TCP cubic more significantly than in Figure 8a . Since the
protocol packages multiple TCP data segments together, a loss of
a single Data packet results in a loss of multiple TCP segments.
However, such effects can be mitigated with in-network Interest
retransmission by NDN/CCN forwarders.

4.2 Proof of concept software
Building an actual TCP/ICN proxy for Linux/Unix operating

systems is a good way of verifying the correctness of simulation
model, obtaining more realistic performance measurements, and
discovering new engineering problems not evident in simulation
environment. Our experimental network topology is identical to
the linear topology in NDNsim: two TCP/IP endpoints connected
through three Cisco ICN forwarder nodes, two of which have for-
ward and reverse TCP proxies running (Figure 10b).

While our simulation models could handle only a single TCP

119

TCP client IP forwarder IP forwarder IP forwarder TCP server

(a) TCP/IP network setup.

TCP client TCP server ICN forwarder
TCP/ICN proxy

TCP firewall

ICN forwarder ICN forwarder
TCP/ICN proxy

TCP firewall

(b) TCP/ICN network setup.

Figure 10: IP and ICN simulation / proof-of-concept network
topologies.

connection, our proof-of-concept unreliable prefetching TCP/ICN
proxy for *nix OS is capable of maintaining hundreds of simultane-
ous TCP connections. To ensure that the TCP/ICN proxy does not
affect TCP flow fairness, we conducted a number of experiments
with Iperf2 tool used to generate unidirectional and bidirectional,
single and multiple competing TCP data streams between the two
outermost nodes in a linear 5-node topology.

Figure 11 illustrates standard deviation of flow completion time
of 10 simultaneous unidirectional short (1Mb), medium (10Mb)
and large (100Mb and 500Mb) TCP flows generated with Iperf2
tool. Error bars represent the distribution of flow completion time
among competing TCP flows. The compact distribution of flow
completion time means that each TCP flow is treated fairly by
TCP/ICN proxies regardless of TCP flow size. The similarity of
mean values of flow completion time across TCP/IP and TCP/ICN
network setups shows that a TCP data stream can be pulled over
NDN and CCN networks without significant additional delay or
loss of goodput (e.g. within 5% difference).

50

100

150

200

1 10 100 500

TCP flow size (Mb)

TC
P

flo
w

 c
om

pl
et

io
n

tim
e

(s
ec

)

TCP/ICN

TCP/IP

Figure 11: Flow fairness and completion time of 10 competing uni-
directional TCP streams.

In addition to synthetic tests with Iperf2 tool, the TCP/ICN proxy
was tested with real user traffic using the Firefox browser accessing
popular web search engines, video streaming and other websites.

Initially, we experienced multiple performance and functional chal-
lenges, because the major part of web interaction takes place over
encrypted TLS channels that require special TLS handshakes to
each participating web server, and sometimes dozens of TLS hand-
shakes per complex web page. The root of the problem is in TLS
server hello messages carrying TLS crypto information along with
server certificate. TLS server hello messages occupy multiple TCP
data segments for which there are not enough outstanding Interests
at the proxies immediately after a successful TCP handshake. In
order to facilitate TLS handshake as well as TCP implementations
with fast start/open mechanism, forward and reverse proxies must
transmit a certain number of additional Interests towards each other
during TCP connection setup phase. This mirrors the experience in
native TCP where good performance for TLS sessions is contingent
on the TCP initial window being increased from 2 to 10.

5. CONCLUSION AND FUTURE WORK
Content Centric and Named Data Networking technologies have

been under design and active development for almost 7 years to
date. Now is the time to begin active work on realistic IP-to-ICN
transition and co-existence strategies, and this paper represents one
of our initial steps in this direction.

We do not know yet how to provide workable interoperability
for every kind of IP application in a way that preserves the spirit
and useful properties of CCN and NDN networks. For these ar-
chitectures to make good on their promise, exploiting rather than
avoiding their important properties seems critical. These include
embracing the pull model rather than forcing push operations into
the design, improving congestion and flow control through the hop-
by-hop stateful forwarding model, and achieving both fairness and
high network utilization through multi-path forwarding. By explor-
ing the performance and complexity tradeoffs in achieving interop-
erability at the transport layer and above, we can make more in-
telligent decisions about where to bend or otherwise modify the
ICN protocol designs to better accommodate interoperability with-
out compromising their promise as the spanning layer of a future
Internet.

The solutions proposed in this paper enable the transit of all of
the original information in TCP/IP headers and packet payload be-
tween each pair of TCP/IP endpoints, thus supporting all TCP flags
and options, and preserving TCP end-to-end semantics. TCP/ICN
proxies do not modify the TTL value in the IP header, and therefore,
from the viewpoint of the TCP endpoint, the whole ICN network
segment is observed as a single potentially congested link. It is ex-
pected that the congestion in ICN network segment is controlled by
TCP/ICN proxies along with actively participating NDN/CCN for-
warders. This was one of the main motivations for us for avoiding
excessive overhead in ICN packet count / size compared to TCP/IP
packet count / size.

One very attractive target for near-term interoperability is the
mobile edge, where ICN’s demonstrated advantages in mobility
management are most apparent. With this technology, the mobile
edge could run ICN natively, with the TCP/ICN proxies in the mo-
bile device at one end (using standard proxy daemon methods) and
the other end at the Packet Core gateway in the mobile operator’s
network.

Beyond simply achieving interoperability, an interesting idea to
explore is to understand whether there are any real benefits of using
ICN as an underlay for TCP/IP traffic. It might be possible to re-
duce some of the overhead of the inter-proxy ICN protocol and even
get ahead of the original TCP/IP in terms of goodput (especially
over lossy channels) if CCN/NDN forwarders have in-network con-
gestion management or in-network loss recovery mechanisms.

120

6. ACKNOWLEDGEMENTS
The authors thank the ACM ICN reviewers and our shepherd

Craig Partridge for the comments that helped to improve the paper.

7. REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,

N. H. Briggs, and R. L. Braynard, “Networking Named
Content,” in Proc. of CoNEXT, 2009.

[2] L. Zhang et al., “Named Data Networking (NDN) Project,”
Tech. Rep. NDN-0001, October 2010.

[3] I. Moiseenko, M. Stapp, and D. Oran, “Communication
patterns for web interaction in named data networking,” in
Proc. of ACM ICN, 2014.

[4] E. Nordmark, “Stateless IP/ICMP translation algorithm
(SIIT),” 2000.

[5] M. Bagnulo, P. Matthews, and I. v. Beijnum, “Stateful
NAT64: Network address and protocol translation from IPv6
clients to IPv4 servers,” 2011.

[6] P. Wu, Y. Cui, J. Wu, J. Liu, and C. Metz, “Transition from
IPv4 to IPv6: A state-of-the-art survey,” Communications
Surveys & Tutorials, IEEE, vol. 15, no. 3, pp. 1407–1424,
2013.

[7] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for mobile
hosts,” in Distributed Computing Systems, 1995.,
Proceedings of the 15th International Conference on.
IEEE, 1995, pp. 136–143.

[8] J. Border, J. Griner, G. Montenegro, Z. Shelby, and M. Kojo,
“Performance enhancing proxies intended to mitigate
link-related degradations,” 2001.

[9] D. Trossen, M. J. Reed, J. Riihijarvi, M. Georgiades,
N. Fotiou, and G. Xylomenos, “IP over ICN-The better IP?”
in Networks and Communications (EuCNC), 2015. IEEE,
2015, pp. 413–417.

[10] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and
L. Zhang, “Interest flooding attack and countermeasures in
Named Data Networking,” in IFIP Networking Conference,
2013. IEEE, 2013, pp. 1–9.

[11] A. Compagno, M. Conti, P. Gasti, and G. Tsudik, “Poseidon:
Mitigating interest flooding DDoS attacks in named data
networking,” in Local Computer Networks (LCN), 2013
IEEE 38th Conference on. IEEE, 2013, pp. 630–638.

[12] M. Leech, “SOCKS protocol version 5,” 1996.
[13] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and

D. Towsley, “Inferring TCP connection characteristics
through passive measurements,” in INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, vol. 3. IEEE, 2004, pp.
1582–1592.

[14] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP
congestion avoidance algorithm identification,” Networking,
IEEE/ACM Transactions on, vol. 22, no. 4, pp. 1311–1324,
2014.

[15] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang,
“ndnSIM 2.0: A new version of the NDN simulator for
NS-3,” Technical Report NDN-0028, NDN, Tech. Rep.,
2015.

.

121

	Introduction
	Related Work
	TCP/ICN design alternatives
	High-level design goals
	Unaltered TCP/IP stack and applications
	Preserve TCP end-to-end semantics
	Pull data between proxies
	No requirement for longest prefix match in the PIT
	Minimize overhead

	Non-goals
	Support of IP or other transport protocols
	Heterogeneous addressing and routing
	Path MTU-discovery and fragmentation

	Basic fetching proxy
	Inter-proxy protocol operation
	Quick analysis of the protocol

	Reliable prefetching proxy
	Inter-proxy protocol operation
	Quick analysis of the protocol

	Unreliable prefetching proxy
	Inter-proxy protocol operation
	Quick analysis of the protocol

	Evaluation
	Simulation
	Proof of concept software

	Conclusion and Future work
	Acknowledgements
	References

