
Bachelor PO - RIOT im Internet of Things

Sebastian Meiling
iNET RG, HAW Hamburg

sebastian.meiling@haw-hamburg.de

mailto:peter.kietzmann@haw-hamburg.de?subject=

Patterns
• Unicast 1:1

• Broadcast 1:*

• Multicast 1:n

send to broadcast address

send to multicast address

client-server like

Signalling
• Polling

• (periodic) request data from sensor node

• 1 request [+ 1 ACK] + 1 response/data [+ 1 ACK]

• Timer
• periodically send sensor data to server/gateway

• 1 data message [+ 1 ACK]

• Event
• send sensor data triggered by event, e.g., threshold

• 1 data message [+ 1 ACK]

IoT Networking
• typical characteristics:

• wireless communication using low power, lossy radios

• nodes may sleep, thus don't (want to) receive at all times

• (likely) multiple hops between sender and receiver

• multi hop communication requires routing protocol

• RIOT uses RPL
• designed for 1:n and m:1 communication,

• 1:1 unicast also possible, but less efficient

ok!

how?

root

RESTful API
• uses standardised HTTP methods:

• GET retrieve data item, 1 GET-Request + 1 Response [+ 2 ACKs]

• PUT update data item, 1 PUT-Message + 1 Response [+ 2 ACKs]

• POST create data item, 1 POST+ 1 Response (new ID) [+ 2 ACKs]

• resources are encoded and accessed via URLs:

• example usages:

• GET /temperature or GET /temperature/node01/

• PUT /temperatures/node01/2015-10-16_08-55-10

• POST /temperatures/node01/

https://en.wikipedia.org/wiki/Wireless_sensor_network

schema <- host = IP -> <---- PATH ---->

send [GET /wiki/Wireless_sensor_network] to en.wikipedia.org

CoAP
• Constrained Application Protocol, RFC 7252
• lightweight HTTP equivalent for the IoT
• wide variety of payload types (like MIME)
• uses UDP transport, unlike HTTP+TCP
• optional ACK-like mechanism and retries
• libraries for C/C++, Java, Python, etc...
• see: http://coap.technology

http://coap.technology

CoAP in RIOT
• native CoAP support by gcoap
• or third party libraries:

• libcoap: (nearly) feature complete, standard conform

• microcoap: small, simple, but server side only

• we recommend gcoap:
• lightweight and simple, based on nanocoap

• supports client and server side

• caveat: under development, API changes possible

• See example: https://github.com/RIOT-OS/RIOT/tree/master/
examples/gcoap

https://github.com/RIOT-OS/RIOT/tree/master/examples/gcoap
https://github.com/RIOT-OS/RIOT/tree/master/examples/gcoap
https://github.com/RIOT-OS/RIOT/tree/master/examples/gcoap

CoAP Demo

• RIOT as CoAP client PUT sensor data
• Raspberry Pi as protocol gateway

• L1+L2: IEEE-802.15.4 to Ethernet
• L3: 6LowPAN to IPv6
• L4: UDP to TCP
• L5: CoAP to HTTP

www.riot-os.org

http://www.riot-os.org

