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Kurzzusammenfassung
Die verteilte Programmierung stützt sich in hohem Maße auf die Kommunikation über
das Internet, um die Skalierung und Verteilung von Aufgaben über physische Gren-
zen hinweg zu ermöglichen. Das Aktormodell erweitert dies, mit einem netzwerktrans-
parenten Kommunikationsmodell unter Verwendung von Nachrichten. Das C++ Actor
Framework (CAF) ist eine Implementierung des Aktormodells, das einen Netzwerk Stack
Entwurf bereitstellt, der auf eine gründliche transparente Abstraktion der komplizierten
Netzwerk-APIs abzielt. Es ist jedoch sowohl in der Erweiterbarkeit als auch in der
Kombinierbarkeit begrenzt, was es schwierig macht, mit den sich stetig ändernden An-
forderungen an einen solchen Stack Schritt zu halten. Neue Transportprotokolle wie
Quick UDP Internet Connections (QUIC) oder Anwendungsprotokolle wie WebRTC
wären gute Ergänzungen, die aufgrund des derzeitigen unflexiblen Designs nicht inte-
griert werden können. Die Arbeit in dieser Arbeit überdenkt den derzeitigen Ansatz
und schlägt ein neues Design für die Abstraktion der Netzwerkschicht vor. Dieser neue
Ansatz wird in Bezug auf Zusammensetzbarkeit, Wiederverwendbarkeit und Erweiter-
barkeit fertiggestellt, wodurch eine flexiblere Netzwerkabstraktion für CAF geschaffen
wird. Eine Implementierung des neuen Entwurfs dient dazu, die Fähigkeiten und Gren-
zen aufzuzeigen, wodurch der Wert des Entwurfs für zukünftige Arbeiten bewertet wer-
den kann.
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Abstract

Distributed programming relies heavily on communication over the Internet to enable the
scaling and distribution of tasks across physical boundaries. The actuator model extends
this by providing a network transparent communication model using messages. The
C++ Actor Framework (CAF) is an implementation of the actor model that provides a
network stack design that aims at a thorough transparent abstraction of the complicated
network APIs. However, it is limited in both extensibility and composability, making it
difficult to keep up with the ever-changing requirements for such a stack. New transport
protocols such as Quick UDP Internet Connections (QUIC) or application protocols
such as WebRTC would be good additions that cannot be integrated due to the current
inflexible design. The work in this thesis reconsiders the current approach and proposes
a new design for the abstraction of the network layer. This new approach will be finalized
with respect to composability, reusability, and extensibility, thus creating a more flexible
network abstraction for CAF. An implementation of the new design is used to show the
capabilities and limitations, which allows assessing the value of the design for future
work.
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1 Introduction

Distributed Programming has gained much attention over the last decades. Companies
like Google built large scale distributed systems to cope with the fluctuating load of their
services. Distributed software brings difficulties that make designing and programming
such systems very complicated [2]. Software like this need to be designed thoroughly and
factor in reliability and scaling, as well as performance. Race conditions, the integrity of
data, and partial failures of the system are just some problems that have to be kept in
mind. Often programmers need expert knowledge of OS-specific mechanisms that can
impact the performance greatly.

The actor model introduces a „share nothing“ approach, where actors cannot alter the
state of another actor directly. The state of a specific actor can only be altered by the
actor itself when a message is received, thus the actor model is thread-safe by default.
To achieve this, message passing [3] is used as the only way of communication. This
implies weak coupling between actors which in turn leads to very reliable and flexible
software. Software systems consist of many interconnected parts, which are strongly
coupled. Hence, the failure of single components can affect the whole system, which
makes them error-prone. With the use of actors, such partial failures are unproblematic
since the system is not coupled to the failing instance. Failed actors can easily be re-
deployed and continue where the failed actor has stopped.

Distributed computing relies heavily on the performance of the network and its abstrac-
tion, thus reliable networking capabilities are needed. Protocols like the Transmission
Control Protocol (TCP) [4] or QUIC [5] offer ordering and loss detection, while simpler
protocols such as User Datagram Protocol (UDP) [6] do not. Capabilities like ordering
or loss detection are often desired. However, undesired features are often bundled with
them. For this reason, composability can be very beneficial for building a reliable net-
work stack. The possibility to add features to protocols enables programmers to build
stacks specifically tailored for the use-case. Hence, the protocol can be chosen for its
behavior instead of the reliability features it provides.
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1 Introduction

In this thesis, the current network abstraction of the C++ Actor Framework, as well as
its limitations will be discussed. Furthermore, changes have been proposed that address
these limitations, which will be evaluated.

1.1 Organization of work

Chapter 2 gives an overview over the actor model itself. In Chapter 3 problems with
the current design are discussed, while related work is shown in Chapter 4. Chapter 5
explains certain design decisions while Chapter 6 discusses the actual implementation
of the stack. The benchmark results are shown and evaluated in Chapter 7. Finally,
Chapter 8 concludes the work and provides an outlook on possible future work in this
field.

2



2 Actor Programming

The work of this thesis is based on CAF [1], thus the reader requires at least basic
knowledge of actor programming and its benefits. This chapter provides a short overview
of the actor model of computation and introduces CAF and some of its features.

2.1 The Actor Model of Computation

Against the background of the ever-growing software demands, computing performance
needs to be improved. In the past, the solution for this was building larger-, more
powerful computers which proved to be very costly and time-intensive. A more modern
approach is to distribute software systems across many nodes. This way, the need for
single, high-performing supercomputers no longer exists. A more recent approach is
to build distributed systems, which are scattered across the world. This approach is
much cheaper, while the performance can be as good or better than the conventional
approach. Furthermore, the scalability of such systems is way better compared to the
approach using undistributed computer-systems.

First proposed by Carl Hewitt et al. in 1973 the actor model was intended for the use
with AI [7]. In 1986 Gul Agha has formalized this idea [8], which has then become
a more general programming paradigm. „Actors are concurrent, isolated entities that
interact via message passing“ [3]. Actors consist of only a behavior, which describes
how they react to messages, their state, and a mailbox for incoming messages. Each
actor consumes messages sequentially from its mailbox until it is empty. Every time a
message is consumed, a matching message handler from their behavior is called. This
strict sequential order of events is thread-safe by default and thus synchronization steps
can be omitted.

Actors are identified by unique identifiers, which enables transparent addressing of indi-
vidual actors. Because of this, messages can be dispatched transparently to either a local

3



2 Actor Programming

or a remote actor. This feature enables porting such software from a local multi-threaded
to a distributed context easily with very few changes.

Upon receiving a message, actors can react in three distinct ways:

1. Send messages to other actors

2. Alter its state (including the behavior)

3. Spawn new actors

This very restricted set of actions avoids common bugs like race conditions or data
corruption.

The first implementation of the Actor Model has been proposed with Erlang in the mid-
’80s. Even though the creators of Erlang never actually referenced the Actor Model, it
still is very close to the ideas of it. The main goal was to create a language for use in
the field of telecommunication technologies. Key requirements were fault-resistance and
distribution–The resulting software should be able to „run forever“ [9].

In the last decade, other implementations of the Actor Model have emerged. Frameworks
like Akka [10], Orleans [11], or CAF [12] are only some examples.

2.2 C++ Actor Framework

CAF is an implementation of the actor model written in C++. The framework has many
advantages when compared to other implementations of the actor model. Software that
is written in C++ is compiled ahead of time for the targeted architecture and operating
system (OS). Thus, it does not rely on a virtual machine and runs natively on almost
any hardware.

Two different approaches to implement actors are provided: function-based (using lamb-
das), or class-based. Programmers can thus choose between a strictly functional or an
object-oriented approach. Furthermore, spawning and deleting actors are both efficient
operations, since CAF actors have a very small memory impact. This enables to rapidly
spawn and kill actors even for very small tasks, without adding a noticeable impact to
the runtime.

4



2 Actor Programming
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Figure 2.1: Comparison between CAF and OpenMPI [1]

Actors are scheduled by the actor-scheduler, and executed by workers. Workers
are thread abstractions designed to execute the lambdas provided by actors. This ap-
proach enables rapid switching between many actors without dealing with the overhead
of scheduling many threads. When an actor needs to call slow or blocking system calls,
actors can be detached. A detached actor is executed by its own thread and thus, does
not rely on being executed by a worker. Hence, it cannot block the execution of other
actors.

Another feature provided by CAF are statically-typed actors. Such actors enable the
compiler to check the messaging interface against all incoming messages. This feature is
particularly interesting in a distributed setting because actors are allowed to drop mes-
sages they cannot handle without an error message. This circumstance makes finding
such bugs very difficult since there might be no debugging information present. To use
statically-typed actors, remote actor handles have to be converted to the type of the
remote actor before sending messages to it. While this allows type-safe communication
between actors which eradicates a whole error category, it introduces only a small im-
plementational overhead. However, since the type checking is done at compile-time, no
runtime overhead is added.

The memory layout of actors in CAF has been optimized to make perfect use of CPU
cache lines. The actor base-class has been carefully padded to fit into a single 64 byte
CPU cache line which is the most common size in recent CPUs. This prevents an issue
called false sharing [13], where two CPU cores would interfere with each other when
accessing the CPU cache.

5



2 Actor Programming

Since message passing is a key part of the actor model, CAF provides a unique mes-
sage passing implementation. The message passing layer features typed interfaces, and
thus the ability to use typed messaging, which is unusual for Message Passing (MP)
implementations. Since commonly used implementations of MP are written in C, type
information is often hidden behind void pointers. Charousset et al. [1] have compared
OpenMPI [14] and the implementation in CAF, by sending and processing images of the
Mandelbrot set in a distributed system. As shown in Fig. 2.1, they found that the two
implementations have almost identical runtimes.

6



3 Problem statement

CAF features a network abstraction layer that is specially designed for actor messaging
and the management of CAF nodes. The implementation has grown over the years and
requirements for it have changed, thus it does not meet the expectations anymore. This
chapter explains the requirements for such a network abstraction layer and proposes
changes that target issues with the current implementation.

3.1 Configurability

A crucial step when designing networking capable software, is to select the best fitting
transport protocol for the use-case. The most widely used transport protocol is TCP
[4], which bundles reliability guarantees such as retransmission, congestion control, and
more. These features allow transmitting large quantities of data over the Internet with-
out the risk of loss or data corruption.

The current network design in CAF is strongly coupled to TCP, because the protocol
reduces the implementation overhead. Designing and implementing reliability features
is a time-consuming and complex task, which is not necessary when using a reliable
protocol. Since the field of application of CAF had no use for other protocols at the
time, the overhead was left aside until such use-cases would emerge.

3.1.1 Transport Protocols

TCP is the current de facto standard because of its many benefits, but also has issues
that should be known. Managing large numbers of TCP connections, for example, adds
significant overhead to the runtime and memory usage [15]. The retransmission feature
uses timers to trigger retransmits when packets have been lost. Since communication
over TCP is ordered, all packets that have already been received are held back, until the

7



3 Problem statement

missing packet(s) have arrived. The added memory overhead comes from the additional
state that has to be held for the connection itself. Every packet that has been sent, has
to be held and tracked until the remote node acknowledges the transmission. While the
memory usage per connection is limited, this adds up with a growing number of sockets
and can impact the performance of resource-limited systems.

In CAF, each actor that should be accessible over the network, currently adds a socket to
the runtime. This potentially increases the number of sockets that have to be managed
by the CAF runtime significantly. Such behavior is comparable to a busy web server, that
needs to manage many connections simultaneously. Thus, this situation could impair
the performance of resulting software written using CAF and should be kept in mind
when designing a network topology.

Another issue with TCP is the Head-of-Line blocking (HOL blocking), which can occur
in switching hardware. This kind of hardware is commonly implemented using a First In
- First Out (FIFO) buffer per port, that forwards incoming packets in the same order as
they were received. Since IP packets are routed individually, a previously ordered stream
of packets can be received out of order and on different ports of the device. In the case
of congestion on a route to a destination, the packets to that node are withheld, which
blocks all other packets in the queue. This behavior can limit the throughput of such a
device to up to 58.6% [16]. A possible solution for this problem is to use virtual output
queuing instead of simple FIFO buffers. By virtualizing the buffers for each endpoint,
HOL blocking can be solved, however, this implies that a sending endpoint can not avoid
such a situation if it is connected to a switch without this capability.

A quite critical issue with TCP is that it is not appropriate for the use in real-time appli-
cations such as Voice over IP (VoIP) or gaming. Due to the situation with conservative
timeouts, the runtime behavior is not sufficient for such use-cases. It adds significant
overhead to the application, which has to wait for data that is possibly outdated by the
time the missing packet has arrived. Simpler protocols such as UDP or more special-
ized ones like Stream Control Transmission Protocol (SCTP) would be more appropriate
choices for this field.

Currently, the networking capabilities of CAF are very restricted due to the strong
coupling to TCP. The design of the stack has been implemented in a way that switching
protocols, implies many changes in the overall implementation. Thus, configurability
options for including different protocols easily has not been included in the design. This
limits the application domains in which CAF could be used. Also, the overall design

8



3 Problem statement

has been carefully designed and optimized in terms of performance–But only with TCP
in mind. Due to this, the level of complexity has risen to a level where a redesign is
necessary to clean up the code to make it easier to maintain.

3.1.2 Application Layer Protocols

Application layer protocols are situated on top of the transport layer and responsible
for processing and preparing data. Usually, they represent a software-specific behavior,
that is used to communicate between different parts of software running on individual
nodes. Well known examples for application protocols are Telnet [17], HTTP [18], or
SSH [19], which are all implemented in the application layer.

The ability to use and implement such protocol abstractions is crucial in the process of
building a reliable network stack. Reliability options can be added and stacked with this
kind of approach. This would be an important addition because it enables programmers
to add such options to more limited protocols such as UDP to improve performance.

The current design in CAF does not provide an API to implement application protocols
to the stack. However, they can still be included by implementing brokers, which are
a special kind of actor. These entities manage the way a specific endpoint behaves while
communicating over the Internet. To do this, brokers provide a set of message handlers to
process incoming raw_data_messages that are then passed on to the receiver. The best
example for this approach is the Binary Actor System Protocol (BASP) broker, which
handles all communications between different CAF nodes, including actor-messages.
This approach is scalable and fits perfectly into the actor communication API (because
brokers are actors).

However, this solution also has limitations that are impractical for the end-user of CAF:
The modularity. More specifically, brokers can not be stacked or chained together to
form a protocol stack. Using multiple application layer protocols together is difficult
and tedious because possibilities to compose brokers are limited. The only way of ac-
complishing this behavior is to implement a single broker that handles both protocols
at the same time, rendering modularity virtually impossible in this design.

Additionally, the lack of possibilities to add certain reliability options to protocols leads
to strong coupling to the guarantees of the used protocol. Since CAF currently relies
solely on the guarantees of TCP, the error propagation of it is limited. For example,
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determining the liveliness of another CAF node is solely accomplished by the state of
the connection to it. This is especially critical in the case of frozen nodes. Such a state
does not imply that the connection to the stale node is closed, thus the connection state
does not reliably propagate the state of the remote node. Hence, a full rewrite of this
abstraction in favor of a configurable design is necessary to add reliability options such
as gossip protocols [20] to determine the state of remote nodes.

3.2 Performance of the Network Stack

Along with the reliability, another key goal of communication over the Internet is the
performance. Such performance is measured by the transmission latency, the through-
put, and jitter. Latency describes the duration between the arrival of packets–If this
interval is high, throughput and reactivity of systems is affected. Continuously changing
latency is called jitter, high amounts of jitter can lead to congestion, which in terms
can decrease the overall network throughput drastically. Lastly, throughput is the total
amount of data that can be transmitted over the network. Naturally, high throughput
networking is the goal of any program that is using the network to communicate.

While the performance of a given network cannot be affected directly by the software, it
can aim to exhaust the networking capabilities of the OS it is running on. By limiting the
added overhead of the network abstraction, for example, a significant performance loss
can be mitigated. The efficient processing of data can increase throughput significantly
because it allows the OS to send the data in a continuous stream. The current implemen-
tation of the network stack in CAF has not met this requirement, due to inefficiencies
with serializing and multiplexing.

3.2.1 Serializing

Transmitting data over the Internet poses the problem of correct data representation.
The simplest example is endianness: The byte order within the binary representation
of an integer number. To avoid this problem, data must be serialized into a previously
defined format.

The process of serializing includes copying the data that should be sent into another
buffer, which is an expensive task. A possibility to limit the cost of this is to parallelize
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the work. Such a solution requires dividing the data into chunks, which can then be
processed concurrently by multiple serializers. While this approach could potentially
deal with the overhead of copying, other overheads, such as synchronization or scheduling
are added and have to be closely watched.

The current implementation in CAF prevents this since it was designed with the task be-
ing strictly single-threaded, hence the current serialization process scales poorly. Message
buffers for serializing into, as well as the unique message queues of the socket-managers,
have not been implemented for such a use-case and thus lack synchronization. On the
other hand, deserialization is already implemented concurrently, which improves perfor-
mance noticeably.

Thus, serializing data concurrently is a solution to mitigate the impact of copying. It
can reduce the resulting waiting time of socket-managers, which will improve the overall
performance and reactivity of resulting software.

3.2.2 Multiplexing

Managing large numbers of connections is a costly task, thus using asynchronous I/O
and efficient event multiplexing is important. OS features, such as select, poll, and
epoll are implementations of the reactor pattern, which is designed to handle this task.
The pattern monitors a set of sockets for events and triggers specific events when reading
or writing is possible on a socket.

Fig. 3.1 illustrates the process of multiplexing I/O events. Necessary components are
a reactor implementation such as epoll and a set of event handlers. Handlers are
coupled to an open socket and added to a pollset which the reactor monitors. Each time
an event on one of the sockets occurs, the corresponding handler is triggered with the
type of event (read, write). The event handler then proceeds to handle the event by
writing to or reading from its socket. When data is received it forwards it to a sink,
which can then process it.

Since this routine is commonly used in asynchronous communication, the current im-
plementation of CAF relies on epoll as reactor implementation. Event handlers are
implemented in the form of the stream class, while the broker class functions as a
sink for the data.
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Figure 3.1: Generalized overview of the multiplexing process

The multiplexing process is currently implemented strictly single-threaded, which limits
the capabilities of the multiplexing design. Parallelizing this routine could potentially
add a substantial performance gain to the network stack implementation. Multiple mul-
tiplexing instances could handle connections concurrently, thus distributing the overhead
of managing ever-growing poll sets across them.

Thus, a new thread-safe design for the multiplexing implementation is proposed. This
would open the possibility of running multiple multiplexer instances concurrently,
thus enhancing the performance of the whole network stack.

3.3 Resolving Actors

To be able to offer their service, actors have to be accessible over the Internet. Thus,
publishing and resolving actors are essential processes when building distributed systems.
CAF currently implements this process by assigning a unique socket to every actor that
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needs to be accessed remotely. It is then published by binding its socket to a port, which
allows accepting incoming connections from remote nodes. Accessing such an actor can
then be done by connecting and carrying out a basp-handshake. To minimize the
number of open sockets, the runtime then checks whether the remote node is already
known or not. If that is the case, the newly established connection is dropped, and the
communication channel is moved over to the already existing connection.

While this approach is easy to implement, it is laborious and also bears some disadvan-
tages. Opening a connection to an already known CAF node simply to do a handshake
and close it afterward is unnecessarily complex and adds a significant runtime overhead
to the connection process. Since the host is known beforehand, a simpler approach would
be to check for an existing connection beforehand. Publishing single actors to ports, also
renders it impossible to identify the type of actor without connecting to it. Currently, a
handshake between both nodes is required to figure out the type of the actor. Further-
more, the resolving process lacks proper error propagation. Only errors of the underlying
transport protocol are observed, which limits the feedback of the process to connection
problems. This type of error is inexpressive in this situation because transport problems
are just a subset of the possible reasons the resolving of actors can fail.

3.4 Encrypting Network Communications

Data is often sent over the Internet in the form of plain text and is thus readable by
anyone who obtains a copy of it. This is undesirable, especially when sensitive data such
as personal information or passwords are transmitted. Hence, encryption is often used
to secure such data so that only authorized participants can decipher, and read it.

Two main communication models can be implemented when using encryption: The
client-server model or the end-to-end model. The client-server model encrypts data only
from host to host, thus the data is only encrypted between two nodes. This implies
that the data is only secure when communicating directly with the receiver. End-to-end
encryption is a variant of this model, which encrypts the communication between the
sender and the actual receiver of the data. Thus allowing data to be securely forwarded,
even when multiple hops are necessary to reach the receiver.

Since actors are extremely volatile by design, the end-to-end model is not suitable for
the actor model. Encryption contexts would have to be created and handshakes have to
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be carried out for every new actor that is spawned, which adds an unnecessary overhead
to the communication. The client-server model is much better suited for this use-case,
since CAF nodes are not as volatile as actors.

Thus, encryption is a very usable feature, that should be implemented in a feature-rich
network stack abstraction. CAF currently provides libcaf_openssl, which relies on the
OpenSSL project [21] for the actual encryption of data. It uses the client-server model
to allow secure communication between different CAF nodes. However, the library in
CAF is still in experimental state, and uses the broker application protocol abstraction
design. An improvement would be to implement this using a configurable design to
enable encrypted communication for other protocols as well. For example, OSCORE
[22], which is currently being drafted by the Internet Engineering Task Force (IETF),
would be a valuable addition.

3.5 Overlay Networking

Overlay networking is a technique that is used to build a network on top of an already
existing network. It can be used to improve the reliability of a network by providing
multiple communication paths, and routing data accordingly.

CAF currently implements facilities to create such overlay networks by exchanging rout-
ing tables between CAF nodes. With this, CAF nodes do not have to maintain connec-
tions to every single actor. They only have to know which node can forward messages to
the requested endpoint. Thus, actors can communicate using already existing channels
by sending messages that are forwarded by other CAF nodes. This feature is especially
helpful in the case of unreliable connections, enabling the use of the established overlay
in case of connection failures.

However, while this approach can improve overall reliability, it also adds a great deal of
complexity and management overhead to the network layer. Making educated decisions
about how to route specific packets is a very complex task [23], which has already been
implemented by the Internet Protocol (IP) [24]. Another downside is reliability in the
implementation of CAF, which does not propagate errors from remote nodes. This can
lead to the silent dropping of messages that cannot be delivered.
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Since the network stack in CAF does not benefit much from overlay networking, the
feature should be completely removed from the new design. Thus, removing the man-
agement overhead as well as simplifying the code of the implementation.
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This chapter covers related implementations and topics from the field of network ab-
straction design. It begins with an overview of communicating in the field of parallel
computing, covering IPC and different approaches for it. After that, previous efforts
of redesigning the network layer in CAF are explained and discussed, before going over
several other frameworks and their implementations.

4.1 Inter-Process Communication

Distributed computing is a special case of parallel computing. Both paradigms are
widely used in the field of high-performance software. They allow dividing large tasks
into smaller problems, which can then be executed concurrently. This defines the field
of application for computing clusters that scale from a single machine up to highly
distributed systems with many nodes. Managing such systems opens the demand for
reliable ways of communication between processes to notify and share data between
them. This is called Inter-Process Communication (IPC) and is often implemented
using OS primitives such as shared memory, signals, or pipes when it is done locally. In
the field of distributed software, the only feasible way of communication is the Internet
by using sockets.

4.1.1 OS Primitives for IPC

IPC can be implemented using a variety of approaches. The most commonly used
approaches are explained briefly in the following section:

Signals The concept of using signals is one of the oldest paradigms and has been im-
plemented in virtually all OSs including Windows. While this idea is very simple
and easy to use, it is also very limited since it can only be used to notify processes
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or trigger tasks. Signal handlers have to be implemented, which can only receive
a specific signal to trigger them–Implying that transmitting data is not possible.

Shared Memory Shared memory is a very commonly used approach, where two or more
processes use the same memory region to communicate. This approach is very
performant, but since multiple processes access the same memory concurrently,
the integrity of the data needs to be ensured. Thus, requiring expert knowledge
about synchronization facilities like mutex or semaphore to implement thread-
safe access. It is very easy to introduce an unnecessary performance overhead to
such a solution, which can be mitigated by identifying critical sections and keeping
them as small as possible. Hence, the resulting code often leads to race conditions
or deadlocks which are hard to debug because of the complexity that is added by
synchronizing.

Pipes Pipes are simple FIFO buffers that reroute the output-stream of a given process to
the input-stream of another. They are a fundamental part of Unix-like systems and
can be used to send data or just trigger events. Two different types of pipes exist,
named-, and anonymous pipes. Named pipes can be created by one, and obtained
by another process using the identifier of it. Anonymous pipes are usually used in
shell-environments to pipeline different programs together.

Sockets Sockets are a network communication abstraction, that can be used to commu-
nicate locally (Unix Domain Sockets) or over the Internet (Internet sockets). This
abstraction can either be datagram- or stream-oriented, with a variety of underly-
ing protocols, such as TCP or UDP. However, using socket communication locally
is not as performant as shared-memory for example, thus it is not commonly used
for local communication. Communication over the network, on the other hand, can
only be implemented using this approach since it is the de-facto standard to realize
such communications. Hence, this approach is used to communicate in distributed
software systems.

Most of these primitives are suited very well to communicate locally between processes.
However, the problem of communicating between remote nodes can only be solved by,
or in combination with sockets. As an example, distributed shared memory has found
application in distributed software, which is a combination of sockets and shared memory.
This approach relies on a central node that provides memory that can be accessed over
the Internet.
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Frameworks such as OpenMP [25] provide support for implementing this approach. The
whole paradigm of distributing this approach has difficulties with proper scaling though.
In a local environment on just a single node, the overhead that is added by synchronizing
is manageable because once accessed, the copying of data is comparatively fast. Copying
data across different nodes over the Internet though usually is not. Since in a distributed
system the shared memory has to be accessed using this way, copying the data takes
significantly longer. Thus, processes have to wait longer until they can enter the critical
section, which leads to an overhead that can drastically affect the performance of the
whole system.

Another approach is to use plain socket communication. However, this requires at least
a simple protocol that defines a set of rules for the communication process. Thus, a
basic network stack is needed to realize this solution, which makes it more complex and
time-intensive to design and implement.

4.2 Network Stack Abstraction

Building network abstraction with high performance can get complicated very fast due
to the many performance-limiting factors that have to be kept in mind. Scaling of the
stack and processing the data are common pitfalls that lead to high latency when the
number of connections grows.

Thus, a common way to ease the process is to implement it in a stacked approach. In
such an approach, the functionality of the abstraction is divided into different pieces,
which are then implemented as protocols. Each protocol provides very limited but
specific functionality, such as data representation, data transmission, or reliability. These
protocols are then layered to form a network stack, where each layer can only interact
with the two adjacent layers directly.

Since communication over the Internet is inherently unreliable, one of the central el-
ements when building such protocol stacks is reliability. Often, reliability options are
inherited from using sophisticated protocols like TCP or SCTP, which are reliable by de-
sign. However, because of this, they can add a significant runtime and memory overhead
to the stack, which makes them inappropriate for embedded or real-time applications. A
more appropriate solution for such use-cases would be to use simpler protocols such as
UDP and adding the required guarantees in the form of application protocols. Including
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configurability options would widen the application domains of such a stack, rendering
it a necessity for any sophisticated implementation.

4.2.1 Configurable Networking in CAF

The idea of redesigning the network layer in CAF has been discussed before by Hiesgen
et al. [26, 27]. Their work was focused on topics such as reliable communication, reacha-
bility of actors, and scalability. This lead to a partial redesign that added configurability
to the new stack to address the discussed topics.

Configurability options in CAF are very limited because it has been designed only with
TCP in mind. The strong coupling is due to many benefits that came with relying
on TCP as the only transport protocol. For example, CAF did not have to bundle a
custom reliability layer because relying on the guarantees of the protocol was sufficient.
Liveliness indicators could be derived from the state of the connection between remote
nodes, while ordering and loss detection are implemented in TCP itself.

Apart from reliability and messaging guarantees, the reachability of actors was another
field of discussion. When building distributed systems using actors, they have to be
reachable and thus addressable over the Internet. The current implementation addresses
this requirement by binding certain actors to ports, which can be accessed this way.
However, due to firewalls or Network Address Translation (NAT), direct addressing of
such actors is not always possible. Hence, Hiesgen discussed the use of The Interactive
Connectivity Establishment (ICE) [28] in more depth, which can be used to establish
connectivity for offer-answer protocols behind NATs and firewalls.

Another topic was the scalability and performance of the current network design. CAF
can run using an arbitrary number of nodes, which may communicate with each other.
This can result in degrading performance due to the growing number of connections that
have to be managed by the networking layer. The very high level of abstraction that CAF
offers adds another significant overhead to the implementation. Processing previously
received data is a costly task that can be done in a reasonable time. This includes
parsing message headers, serializing and deserializing data, and delivering messages to
the receivers. However, when the number of different endpoints grows, the network stack
has to be able to scale with the growing load. This is a problem that has been pointed
out in their work and should be closely watched in any redesigning efforts.
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The discussion of the current situation in the network stack implementation resulted
in a partial redesign. A crucial modification was the new configurable design which
allowed application protocols to not be implemented as brokers anymore. This step
enabled users to build network stacks that could consist of an arbitrary number of
layers. Transport protocols of choice could be included, which could now be extended
with (custom) application protocols.

The new design also featured a rework of the event_handlers, which were then imple-
mented to be actor-based. This change was thought out to increase the scaling capa-
bilities of the network layer while simplifying the scheduling process. CAF provides a
sophisticated work-stealing actor_scheduler that could be used for this task. While
this idea seemed promising, it proved to add unnecessary overhead to the event-handling
process.

However, a new protocol called QUIC [5] could not be added to the stack, despite the
redesign. It is stream-oriented but relies on UDP as the underlying transport protocol.
Due to the API of many of the reference implementations for QUIC, it was neither
handled like a stream-oriented nor a datagram-oriented protocol. This approach has
shown that there would be problems with other protocols as well.

Hence, the redesign has not been included in CAF but yielded a lot of insight and
concepts on how to create a better-suited design. The three most important ones were:

• The transport abstraction should be as generalized as possible.

• The new design should to be configurable.

• Multiplexing should be thread-safe for future performance improvements.

4.2.2 Netty

„Netty is an asynchronous event-driven network application framework for rapid de-
velopment of maintainable high performance protocol servers & clients“1. Netty is a
networking framework that is very commonly used in Java projects that need to com-
municate over the Internet. It features commonly used transport protocols such as UDP
and TCP, as well as SCTP and UDP-based Data Transfer Protocol (UDT) which are

1https://github.com/netty/netty
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Figure 4.1: Overview of the components in Netty2

more specialized and not as widespread. Also featured in the framework is native sup-
port for the inclusion of application layer protocols such as HTTP(2), SMTP, and many
more.

Design Decisions

Fig. 4.1 gives an overview of the components that Netty provides to build applications
with. Especially noticeable in the core framework is the extensible event model, which
includes reactors and the universal communication API. These components are necessi-
ties for implementing scalable and high performing networking applications. The shown
transport services are just an excerpt of the provided protocols, but especially socket and
datagram abstractions are basics in network programming. Also included is a variety
of application protocols, which include encryption, compression, WebSockets, and many
more.

Netty relies on an event-driven design, based on the reactor pattern using either poll

or epoll from the Java core NIO library. This allows reacting upon I/O-events, rather

2https://netty.io/
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than polling for them on every single open channel. By monitoring the set of Java
streams, it can trigger such events when a stream is ready to be read from or written
to. Thus, making networking using Netty very responsive and efficient, while being very
scalable.

To achieve a high level of abstraction, Netty relies on a design using the so-called Channel

and Handler classes to build a stack abstraction. Channels are asynchronous, event-
driven abstractions of transport protocols, which offer a generalized API. Common ac-
tions, such as bind, close, read, or write are provided by this interface. When using
stream-oriented protocols, a single channel represents a connection to another node,
much like the Stream approach in Java. With the usage of datagram-oriented protocols,
channels are comparable to unconnected sockets, since no connection is established for
this type of protocol.

The application protocol abstraction is provided in the form of so-called Handlers.
These specify the behavior of the protocols while encapsulating the specifics, which al-
lows stacking them. Handlers can easily be added to a Channel, to processes (and act
upon) the received data before returning it to the user. This approach follows the inter-
ceptor pattern, which is based on injecting an interceptor in between two stack layers.
Surrounding layers do not need to know about the interceptor, hence this approach is
transparent. It also offers a very high level of abstraction by separating concerns into
separate classes while minimizing the implementational overhead.

However, the process of implementing multiple layers of protocols is only possible by
inheritance. Protocols have to derive from the following ones and forward the processed
content to them by calling super.messageReceived(ctx, <content>). This leads to
a closer coupling of the different layers, which should not necessary with such a design.

Discussion

Netty offers a very high level of abstraction by providing various wrappers for the low-
level Java API. Even with this kind of overlay, it is possible to use a variety of different
transport protocols which makes the framework versatile and attractive for many use-
cases. Managing a vast amount of connections at the same time is implemented very
efficiently by using event-multiplexing. This approach eradicates the need for expensive
polling strategies and unnecessary blocking calls. Thus, the framework can scale very
well with a growing number of streams, while the performance is not degraded.
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The design of the library is sophisticated and very versatile, which makes building com-
plex network stacks easy and fast. Including custom application protocols is possible,
simple, and thus a key argument for this library. After all, when implementing software
with networking capabilities in Java, Netty is the go-to solution for almost any use-case
there is.

The network abstraction in CAF should include an application abstraction modeled on
the design of Netty. Since their design allows implementing protocols as distinct entities,
the modeling process is very simple. Furthermore, including the protocols in the stack
is very simple and user-friendly. The interceptor-based inclusion of the design in Netty
is versatile and thus very extensible. Thus, the new design in CAF should implement
the inclusion similarly by using this pattern.

4.2.3 Boost Asio

Boost Asynchronous I/O (Boost Asio) 3 is a framework that provides a high-performance
asynchronous I/O abstraction in C++. Originally, the focus was to provide such capa-
bilities only for socket communication. However, the library now supports many more,
including serial-ports and file descriptors. It is focussed on forming a high-level abstrac-
tion for the low-level C socket API, which is known to be very complex.

Design Decisions

As shown in Fig. 4.2, Asio provides several building blocks to build network stacks from.
Components such as sockets, resolving facilities and TCP/UDP support are provided.
Also featured are high-precision timers for triggering events and SSL/TLS support for
encrypting data. Since the library supports a variety of OSs, Windows and POSIX
conformal APIs are implemented.

A high level of abstraction is achieved by implementing wrapper types for the basic OS
components. These offer an API for accessing and calling system functions to achieve
connectivity, or send/receive data from the network. Two components are essential
in the Asio design: The io_context and io_object classes. io_objects function as
wrapping types for OS resources, such as sockets, file-descriptors and the like. This allows

3https://think-async.com/Asio/asio-1.16.0/doc/

23

https://think-async.com/Asio/asio-1.16.0/doc/


4 Related Work

Figure 4.2: Overview of the basic building blocks of Asio4

the library to offer support for a variety of different I/O channels. The io_context class
wraps the actual system calls that have to be performed.

While the framework itself aims to offer simpler implementations of asynchronous com-
munication, it can also be used to perform synchronous I/O. The library provides an
extensive timer API, which is used as a base for any actions that should be performed.
I/O tasks can be scheduled by blocking on a timer.wait(), which can be resource-
intensive. Thus, another approach is to use functions or lambdas that are passed to
the timer, which will execute them on a timeout. This design enables programmers to
follow either a thread-based or a timer-based approach, which makes the framework very
versatile.

Asio provides support for three transport protocols: UDP, TCP, and Internet Control
Message Protocol (ICMP). This allows using the framework in a variety of fields such as

4https://think-async.com/Asio/
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embedded or high-performance computing. However, since the abstraction provided is
based on the socket API, using other protocols is not possible, which limits the versatility.
Furthermore, the framework is intended to function as an abstraction for asynchronous
I/O and thus does not offer any way to include application protocols. This limits its field
of application to the transport layer of applications which implement necessary protocols
on top of this stack.

Discussion

Asio’s extensive abstraction provides components for almost any use-case in network-
ing. A reactor pattern implementation based on poll, epoll, or kqueue is included.
This offers event multiplexing capabilities that enable managing sockets using socket-
events. This approach is very scalable and limits the performance impact added by large
pollsets.

The approach of providing a limited but simple abstraction for networking is helpful
when designing and implementing network stacks. However, due to the lack of appli-
cation protocol support, building complete network stacks on top of this library is still
a challenge. Since the data that is obtained by it is still in raw, unprocessed form, all
the parsing and handling have to be implemented on upper layers. Furthermore, the
number of transport protocols is rather limited, since only TCP, UDP, and ICMP are
supported.

After all, the framework is intended only as a transport layer abstraction and achieves
this goal very efficiently for common transports.

4.2.4 The Adaptive Communication Environment

The Adaptive Communication Environment (ACE) [29] is a framework for building
concurrent communication software in C++. It is well known in the field of high-
performance distributed computing because of its reliability. Work on this library
has been ongoing since 1993, thus the implementation is very sophisticated. Many
performance- and safety-critical projects rely on ACE as their communication back-
end5.

5https://www.dre.vanderbilt.edu/~schmidt/ACE-users.html
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Figure 4.3: Overview over the ACE design6

Design Decisions

Fig. 4.3 provides an overview over the design that is used in ACE. The design is sep-
arated into multiple layers the first layer creates a platform-independent abstraction
over the various networking APIs. This is done by providing an OS adaption layer,
which functions as a base for the framework itself. The framework is built in a very
modular way, which allows programmers to use only selected parts of it. For example,
relying solely on the OS adaption layer to build network-enabled software in a low-level
but platform-independent approach is possible. However, the following layer features a
high-level abstraction by offering various wrappers that expand and improve it.

The set of wrappers provides consistent access to system functions for implementing IPC,
multi-threading, synchronization, and more. They are written in C++, thus following
a strictly object-oriented design, which adds valuable type-safety to the implementa-
tion. Components for event demultiplexing, service initialization and configuration, and
streaming capabilities are provided. The event demultiplexing components include re-
actor and proactor implementations that can be used to dispatch a variety of events

6https://www.dre.vanderbilt.edu/~schmidt/ACE-overview.html
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including I/O, timers, and signals. This expands the versatility and scalability of ACE,
which thus can be used for a variety of applications.

The actual framework is sitting on top of this layer and includes a connector, acceptor,
and handler implementations. Connectors and acceptors simplify the implementation
of client and server applications by wrapping the complex connection extablishment
process. Handlers realize an application protocol abstraction, which can be used to form
full-featured network protocol stacks.

At last, ACE provides different services for building distributed software. Components
that are commonly used in this field, such as logging-, name-, or time-servers are in-
cluded. This speeds up the process of designing and implementing such software while
making it more reliable by providing a thoroughly tested version.

Noteworthy about the design of ACE is the ability to use explicit dynamic linkage. It
enables loading and unloading necessary libraries at runtime. While this approach adds
an implementation overhead to the framework, it can reduce the initial load time and
the memory requirements of applications. This allows resulting software to run even on
very restricted hardware, which is a feature only very few frameworks provide.

Since the abstraction relies on the provided OS features to transport data, only UDP
and TCP are supported. This can be a problem for more specialized applications that
require more unusual transport protocols. However, because an application protocol
abstraction is provided, such protocols can be implemented at the application layer on
top of UDP.

Discussion

The implementation of the library is very sophisticated and has proven to be reliable. A
very high level of abstraction and versatility is provided by ACE by encapsulating every
bit of functionality into components. This approach makes it very easy for programmers
to select specific functionality for their use-cases.

The scalability of the framework is also not an issue. With the event-demultiplexing
implementations, resulting software can be built in a very scalable and efficient way.
Using such a solution drastically limits the management overhead that is added by large
numbers of connections. Thus allowing to build very efficient, large scale distributed
software systems.
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A key feature is the inclusion of an application protocol abstraction, which allows pro-
grammers to build reliable and specialized network stacks. Even the limited number
of supported protocols can be expanded using this feature, which boosts the versatil-
ity of the framework. Thus, making ACE very attractive for implementing network
communication in software written in C++.

The field of application of CAF is manifold, which opens a variety of different use-
cases. Hence, the new network design should focus on achieving a level of abstraction
and composability comparable to the one of ACE. It would enable the framework to
be implemented for more specialized use-cases. However, CAF is a framework for actor
programming, and not a networking framework. Hence, the variety of included services,
such as name- or time-servers are unnecessary and should be omitted.

4.3 An Architecture for Transport Services

The Architecture for Transport Services (TAPS) draft [30, 31, 32] is an effort by the
IETF to standardize the many interfaces for transport protocols. Currently, many APIs
for transport protocols exist, which makes changing the underlying transport very diffi-
cult. Implementing asynchronous transport abstraction layers is a general, standardized
task, which does not differ greatly between the implementations. Modules such as a
multiplexer and a socket API abstraction are necessities, which do not leave much of a
margin for other approaches. Thus, the TAPS working group aims to provide twofold:
a standardized, general interface and a general asynchronous transport abstraction ar-
chitecture for transport protocols defined by the IETF.

Figure 4.4 shows the proposed API model of TAPS. It consists of APIs for resolving and
for stream and datagram communication, which form an abstraction of the provided
functionality in the Linux kernel.

The draft includes features that provide improvements over the current C socket API.
It provides:

• Common APIs for common features.

• Access to specialized features.

• An event-driven asynchronous API.
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Figure 4.4: Overview of the TAPS API model

• A message-oriented data transfer.

TAPS aims to resolve the problem of differing APIs for common features by unifying
them through a common, high-level API. Functions such as connect, receive, send
, and so on provide similar functions for the caller. Thus, a common interface for
them is proposed that fits for all these functions. However, some applications require a
more specialized interface to allow fine-grained access to the underlying protocols. Such
functions are exposed independently of the common API to ensure a flexible design.

Nowadays, network communication is often designed to be asynchronous or at least
pseudo-asynchronous by using an event-driven model. Thus, the draft relies solely on
event-driven I/O and handles every call to the API asynchronously by using callbacks.
For example, the receive call would not be handled instantly but register a callback that
is called after receiving the data. This allows to handle the I/O asynchronously without
having to block on system-calls. Furthermore, it removes the multiplexing facilities that
are currently still necessary for such an approach.

Three communication models can be used for communicating over the network: data-
gram, stream, or message-oriented communication. TAPS relies on message-orientation
for the representation of received and outgoing data. Messages have the benefit that
they contain any number of bytes while being self-contained with a defined size, thus
any amount of data can be transmitted. However, native stream-oriented protocols
require a translation between the two models since, for example, Hypertext Transfer
Protocol (HTTP) uses character delimiters to identify the end of a section. For this,
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so-called framers are proposed, which have to be situated between the application and
the transport layer. These entities read the required amount of bytes and pass it as a
single message to the application layer. Since this can be different for every protocol,
these framers can be exchanged to fit the requirements of the application.

Discussion

The APIs of transport protocols usually provide an abstraction of very similar functions.
Thus, TAPS aims to provide a generic interface for all kernel-provided networking capa-
bilities. This effort to standardize the interfaces for many protocols simplifies exchanging
transport protocols in resulting software. Since this unifies the interfaces, the underlying
transport protocols can easily be exchanged without the need to alter the code. Fur-
thermore, the inclusion of multiplexing facilities in the abstraction allows relying on a
library implementation rather than rewriting the routines every time.

CAFs network abstraction design can benefit from the design proposed by the TAPS
working group. The general API proposed for any transport protocol would be a very
good addition to the design, since it allows swapping protocols easily. Relying on a
message-oriented communication model for communication with the application layer is
something that should be considered for the new design. It provides a good compromise
between datagram and stream-oriented transport protocols. Arbitrarily sized messages
can be processed in the stack without the necessity of streaming or datagram-related
overheads.

However, the framing component used in TAPS is not sufficient for the use-case in CAFs
networking design. The general idea of using framers that create well-formed messages
for the following layers is good but not portable enough. For the redesign in CAF,
such components should be reusable for other configurations, which is not possible with
application-dependent framers.

4.4 Comparison

The examples of related work are manifold and all of them feature different properties
that they provide. Thus, for a complete overview of the criteria Table 4.1 lists all
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CAF Netty Boost Asio ACE TAPS

Configurable
Application Layer ! ! % % %

Exchangeable
Transport Protocols ! ! ! ! !

Inclusion of
Custom Transport
Protocols

d % % % %

Communication
Model

Message-
oriented

Transport
Dependent

Transport
Dependent

Transport
Dependent

Message-
oriented

Asynchronous/
Event-driven I/O ! ! ! ! !

Table 4.1: Comparison of the properties of the frameworks shown in Chapter 4.
Reference: !: true, %: false, d: partially

discussed frameworks. The criteria that have been shown in the table are aimed at full-
featured network stacks. Hence, the criteria also include configurability and application
layer protocol abstraction.

Most of the frameworks are aimed solely at providing a thorough transport abstraction.
The proposed redesign of the stack in CAF and the approach taken by Netty aim for a
broader abstraction though. Hence, both designs allow including application protocols.

The exchangeability of transport protocols is a criterion that all the frameworks fulfill.
However, all of them rely on the transport protocols provided by the OS (e.g. TCP,
UDP, SCTP, etc.). In CAF, the inclusion of other experimental or custom protocols
would be possible but poses a significant implementational overhead.

An important design decision of stacks is the used communication model. For future
portability of the code this is very important since the following layers either have to
be adapted, or adaption layers have to be included in the design. Of the five discussed
frameworks, only two have defined a specific communication model. All others use the
model defined by the underlying transport protocol, which could potentially hinder the
portability of the resulting stack.
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This leads to the conclusion of this chapter. A network stack design should incorporate
threefold:

1. Exchangeable transport protocols.

2. An application layer abstraction.

3. A well-defined communication-model.
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Network stacks provide an abstraction of the given OS features to allow communication
with remote nodes over the network. This is commonly done by splitting the func-
tionality into transport and application layers that encapsulate routines for processing
and transmitting data. The transport layer uses different transport protocols, while the
application layer is using application layer protocols. A new design for both layers is
proposed by this thesis that will be covered, explained, and justified in this chapter.

5.1 Goals of the Redesign

In Chapter 3, issues with the current design have been outlined. These issues combined
with new requirements for a network abstraction design can be rephrased in the form
of goals for the new network stack design. The goals can be roughly divided into four
separate groups: code complexity, composability, scalability, and performance of the
network stack.

5.1.1 Code Complexity

Code complexity directly affects future efforts to maintain and extend the network stack.
Thus, transparent class hierarchies and evident relations between components are neces-
sary to simplify such efforts. Code complexity can be measured with the help of common
software metrics.

Components in the design should have a clear, well-defined function in the stack. This
mitigates confusing similarities between components as well as complex hierarchies that
hide the actual composition. Additionally, it allows using more concise names for com-
ponents which helps to promote the purpose they have in the stack. Both of these topics
relate to the correctness (e.g. following the specification) of the design.
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Furthermore, a clear distinction between programming concepts should be done. Func-
tion calls in one direction and messages in the other hide program paths that help to
understand the program flow. Thus, the redesign should opt for a single concept when-
ever feasible to make program paths as obvious as possible.

This leads to three goals:

1. The purpose of each component has to be clear.

2. Functionality should be well-defined.

3. A single programming concept should be used across the stack.

5.1.2 Composability

Composability of the design defines the ability to exchange and assemble components
in any order. The included protocol abstraction used by the stack should be designed
to be self-contained, to strictly separate the concerns of all instances. This approach
decouples the components, which mitigates the need to change the surrounding code
when the stack is altered.

Transport protocols are always used independently, without the need to compose differ-
ent protocols. Hence, the transport protocol abstraction only has to provide a stable API
that can be used by other components. The Application protocol abstraction is required
to be composable since application protocols are designed to be composed. Thus, the
design of the application protocol components should provide the possibility to compose
them to form a stack.

This leaves four goals for the composability of the design:

1. Coupling between components should be as loose as possible.

2. Exchanging either transport or application protocol abstractions should be easy.

3. Exchanging components should not require changes in other components.

4. Application protocol abstraction has to be composable.
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5.1.3 Reusability

The process of designing components can be time-consuming and complicated. Since the
design of this network stack should be composable, components that have been designed
for other compositions should be reusable. This leads to a single goal for the new design
of the network stack:

1. Components should be reusable for other stack compositions.

5.1.4 Scalability

The scalability of a network stack can be measured by the changes in performance or
memory impact with a specific change of load in the system. For example, the network
stack is required to handle any number of actors communicating with many remote
nodes. This condition should not affect the performance of the stack in any way.

Three goals can be formulated:

1. The stack should scale at most linearly with the number of remote nodes.

2. The number of actors that are involved in remote communication should not have
an impact on resources on the remote node.

3. The throughput of the stack should scale at most linearly with the size of the
messages that are transmitted.

5.1.5 Performance

Software that communicates over the network relies directly on the latency and the
throughput of the underlying network abstraction. High latency and low throughput can
impair the performance significantly which would render timing-sensitive applications
useless. Thus, the new design should aim to provide an abstraction over the OS API
with low latency and high throughput.

The goals for the performance of the design are:

1. Aim to add as little latency to the OS network abstraction as possible.
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Application Layer

Host System

Transport Layer

Figure 5.1: Visualization of the layers in the new design

2. The throughput of the resulting stack should be comparable to similar solutions
such as the Message Passing Interface (MPI).

5.2 The Network Stack Design

The proposed network layer abstraction in CAF has been redesigned from the bottom
up. It includes facilities for I/O multiplexing, as well as including application protocols
and handling the transport of data. The functionality of the design is separated into
two layers: Transport and application layer. Figure 5.1 shows the order of the two layers
between the host system and the actor layer.

5.2.1 Fundamental Design Decisions

The design of the network stack is based on fundamental decisions that have been made
beforehand. Before introducing the new design, these decisions are laid out and explained
in the following section.

Communication Models

There are three viable communication models that could be used within the network
stack: Datagram, Stream, or message-oriented communication.

Within the application layer, the model of choice is message-orientation due to the
variable size of messages that are passed through the stack. It should be possible to
include any number of applications in the stack, thus a payload can be extended by any
number of bytes from each layer. Thus, the communication model within the application
layer needs to allow variably sized messages to accommodate the increasing amount of
data.
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Transport protocols for any of the three communication models exist, which should all be
usable in the network stack. However, datagram-oriented protocols can neither handle
stream nor message-orientation, which poses a problem. The communication model used
within the transport layer depends on the underlying transport protocol that is used.

Scatter-Gather I/O

Processing messages that are continuously expanded would require reallocating memory
blocks and copying the contents of the message. Since both of these are expensive
tasks, the new design requires a more appropriate solution for this problem. Thus,
scatter-gather I/O1 is the chosen approach for the representation of messages within the
stack.

Scatter-gather I/O allows scattering messages across any number of buffers, which can
then be written to a socket in a single system call. A common approach is to issue many
write-calls to write all the buffers sequentially to the socket, which is expensive since
write is a system call. Another approach is to concatenate the buffers before issuing
the write call, which adds a copy-overhead to every write.

However, the API for sending such messages introduces templates, which would not
be necessary without this approach. Furthermore, a possible slicing layer for packet-
oriented transport protocols will be more complicated to design because a single message
is scattered across multiple buffers. Thus, this approach also has the caveat of complexity
that is introduced to the design.

5.2.2 Transport Layer Abstraction

The transport abstraction layer handles the receiving and transmitting of data by provid-
ing a protocol-agnostic interface for accessing the socket API. The new design proposes
an abstraction that is based on four main components: The multiplexer, the endpoint
manager, the transport interface, and the transport extensions, which are optional. Fig-
ure 5.2 visualizes the composition of the three components on the transport layer.

1https://www.gnu.org/software/libc/manual/html_node/Scatter_002dGather.html
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Figure 5.2: Visualization of the Transport Layer in the new design

Multiplexer

The multiplexer is responsible for two tasks in the design: multiplexing socket events
and scheduling event handlers. It relies on a reactor (for example epoll, poll, or
select) that monitors sockets in its pollset for the multiplexing. For the scheduling of
event handlers, the multiplexer waits for an event to occur on any of the sockets, which
it then passes on to the handler. The multiplexer is executed by a dedicated thread,
thus it is the only active component in the whole design.

Noteworthy about the multiplexer is that in the current design there is only one instance.
This limits the stack to be strictly single-threaded, which allows omitting to synchronize
the access to components within the stack.

The use of the multiplexer is critical for the design because it enables serving numerous
sockets concurrently. Without it, either a thread has to be started per socket or the
number of sockets has to be limited. Both of these approaches would drastically limit
the scaling capabilities of the whole design.

Endpoint Manager

The endpoint manager is a component that is situated above the multiplexer in the net-
work stack. First, it functions as local representation for remote endpoints by assigning
a single socket to the instance. This is possible when using TCP because the socket
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represents exactly one remote endpoint. For connectionless protocols such as UDP, this
abstraction is not applicable because a single socket can be used for communicating with
multiple remote nodes. Thus, a dispatching solution has been included in the design that
is explained in Section 6.3.

Second, it functions as an event-handling entity that is scheduled by the multiplexer for
reading and writing. The instance is added to the pollset of the multiplexer, which maps
handlers to their corresponding sockets and triggers them according to the occurring
socket-events.

Third, the endpoint manager is responsible for storing outbound messages until they can
be written to the socket. When an actor sends a message to a remote node, the message
is enqueued in the endpoint manager. The manager stores the messages in a queue until
the multiplexer schedules it for writing. This approach decouples the two threads of
execution (actor and multiplexer) and allows the communication to be asynchronous.

The access to the socket layer is provided by dedicated transport interface components.
These are used by the endpoint managers to access the socket layer during a read or
write event. By encapsulating all protocol-specific functionality in such components,
exchanging transport protocols is simply done by exchanging them. Thus, enabling to
reuse the endpoint manager for a variety of different protocols without the need to alter
it.

Transport Interface

The transport interface provides a consistent, general API for reading and writing data
from and to sockets. Since routines for receiving and transmitting data can vary greatly
between different transport protocols, such an abstraction is required. The proposed de-
sign provides a datagram_transport and a stream_transport for UDP and TCP.

The component has the task of reading and writing data from and to the socket when
it is called by the endpoint manager. For reading, the instance owns a read buffer, in
which the received data is stored before passing it to the application layer. For writing,
the instance dequeues a message from the endpoint manager, passes it through the
application stack and writes the processed data to its socket. Both actions require an
application instance, which can be used for the processing of data, thus an instance of
the application stack is included in the transport abstraction.
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1 /// Stream oriented transport interface.
2 template <class NextLayer>
3 class transport {
4 /// Called by the endpoint manager when the transport can
5 /// read data from its socket.
6 bool handle_read_event(endpoint_manager&);
7
8 /// Called by the endpoint manager when the transport can
9 /// write data to its socket.

10 bool handle_write_event(endpoint_manager&);
11
12 /// Queues the message scattered across multiple buffers
13 void send_data(id_type, span<byte_buffer*>);
14
15 /// Returns the next cached header buffer
16 byte_buffer next_header_buffer();
17
18 /// Returns the next cached payload buffer
19 byte_buffer next_payload_buffer();
20
21 private:
22 /// Buffer for data that was read from the socket.
23 byte_buffer read_buffer_;
24
25 /// The next layer of the stack.
26 NextLayer next_layer_;
27 };

Listing 5.1: Proposed API for the transport protocol abstraction

Fig. 5.1 shows the proposed interface of the transport interface. It provides two call-
backs for I/O events from the multiplexer (handle_read_event, handle_write_event
). handle_read_event will read data from the socket and pass it to the application
layer for processing and delivering actor messages. handle_write_event writes the
data that was received by the application layer after the processing of an outgoing
message. The application layer calls send_data with the processed message or packet
scattered across any number of buffers. For datagram-oriented protocols a slicing layer
has to be included which slices the message into feasibly sized packets.

The other two functions that are provided are used for buffer recycling on the application
layer. Each time a buffer is required, next_header_buffer or next_payload_buffer
can be called to obtain a cached instance. Headers are usually far smaller than the
payload, which led to the decision to separate buffers into these two types. The perfor-
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mance impact of allocating memory for buffers, which can be quite a costly task, can
be mitigated by this. After the processed data has been written to the socket, the used
buffers are cached again for future use.

5.2.3 Transport Extensions

Transport protocols can be extended by transport specific protocols such as Transport
Layer Security (TLS), QUIC, or HTTP. Such protocols are designed as application proto-
cols but the functionality they provide is coupled to the transport protocols underneath.
QUIC for example, is a transport protocol that is designed to extend UDP. Thus, it has
to be situated in the transport layer and not on the application layer, since it extends the
provided functionality of UDP. For this, the new design proposes an obligatory transport
extension layer, which can be used to extend existing transport protocols.

The transport extension is transport protocol specific, which implies coupling the com-
munication model of the components to the underlying transport protocol. For this,
the extension component can provide either of three handle functions: handle_data

for stream-oriented transport protocols, handle_message for message-oriented trans-
port protocols, and handle_datagram for datagram-oriented protocols. Furthermore,
to add type-safety to the components, a tag-type for the input and output model is
introduced, which can be checked at compile time.

The proposed API of the transport extension component is shown in Listing 5.2. In the
beginning the tag types that define the input and output models are defined and checked
against the tags of the next layer. Since in this example a stream is expected as input
type, a handle_data function is included.

5.3 Application Layer Abstraction

With the redesign of the network stack, a new design for including application protocols
is proposed. It allows including protocols in the form of encapsulated components that
can be stacked in a recursive approach. This enables composing different network stacks
in a very versatile way. Figure 5.3 visualizes the components on the application layer.
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1 template <class NextLayer>
2 class transport_extension {
3 static constexpr type input_type = type::stream;
4 static constexpr type output_type = type::message;
5 static_assert(NextLayer::input_type == output_type);
6
7 /// Called by the previous layer, with the data that should be
8 /// processed.
9 template <class Parent>

10 void handle_data(Parent&, byte_buffer&);
11
12 /// Called, when a message should be sent.
13 template <class Parent>
14 void write_message(Parent&, actor_message&);
15
16 /// Called by the next layer to send messages.
17 template <class Parent, class... Ts>
18 void send_data(Parent&, Ts&... buffers);
19
20 private:
21 /// Next layer of the stack.
22 NextLayer next_layer_;
23 };

Listing 5.2: Proposed API for the transport extension components

5.3.1 Application Protocol Abstraction

Protocols only have to know the following instance, which ensures weak coupling be-
tween the individual instances. The weak coupling allows to stack an arbitrary number
of different protocols. Furthermore, by stacking the components instead of using a mono-
lithic approach, designing and configuring such stacks is very simple. Each application
protocol can be designed individually, which eases the design process and allows to reuse
it.

Each protocol has to provide a general interface shown in Listing 5.3. It requires two
functions: handle_message and write_message. handle_message processes mes-
sages that have been received. Additionally, the name of the function reflects that the
processing is message-oriented, which makes the usage more clear. write_message pro-
cesses outgoing messages. Both functions pass the results on to the next layer until the
last application is reached. If actor communication is required, the last application has
to be BASP, which is used in all examples of this thesis.
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Figure 5.3: Visualization of the application layer in the new design

1 template <class Application>
2 class application {
3 /// Called by the previous layer, with the data that should be
4 /// processed.
5 template <class Parent>
6 void handle_message(Parent&, byte_buffer&);
7
8 /// Called by the transport, when a message should be sent.
9 template <class Parent>

10 void write_message(Parent&, actor_message&);
11
12 /// Called by the next application to send messages.
13 template <class Parent, class... Ts>
14 void send_message(Parent&, Ts&... buffers);
15
16 private:
17 /// Next layer of the application stack.
18 Application next_layer_;
19 };

Listing 5.3: Basic API of the application protocol abstraction

Stacking the application instances is done in a recursive pattern. Applications need
a template argument template <class Application> to be composable with other
instances. Each application instance then defines a member of the template type for the
next layers instance. The last application in the stack does not have this template to
break the recursion. Thus, for building a network stack, two types of applications are
necessary: Intermediate application protocols and top-layer application protocols (e.g.
BASP).
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5.3.2 BASP

The design of BASP needed reconsideration as well, since the previous iteration of it
included more functionality than necessary. Thus, the redesign proposes a slimmed-down
version of the protocol.

BASP is now included in the stack in the form of application protocols, which are
added to the protocol stack as the top-layer. With the application-based approach,
multiple BASP instances can be instantiated. This simplifies the process of receiving
and processing data, since each BASP instance only has to handle a single endpoint.

The protocol can now be transport agnostic, which improves the composability of the
stack. Previously the protocol had to distinguish between the underlying transport
protocols to handle the data the right way. This is now obsolete, which eases the process
of including other transport protocols.

Furthermore, the overlay networking functionality discussed in Section 3.5 has been
removed from the stack. This allowed to strip the routing tables and handling routines
from the protocol, which slims down the design even further.

5.3.3 Universal Resource Identifier

The new design proposes the addition of an Uniform Resource Identifier (URI) [33]
for the use within the network stack. URIs allow to unambiguously identify resources
across the network. Hence, they can be used to simplify the process of resolving actors
remotely

1 caf:udp://actor-framework.org:1337/name/source

2 \_____/ \______________________/ \_________/

3 | | |

4 scheme authority path

Listing 5.4: Example of an URI

A basic URI consists of a scheme, an authority, and a locator (path) as shown in Listing
5.4. The scheme can be used to imply a specific transport protocol such as TCP or
SCTP in addition to the application stack composition on top of that. The example uses
the scheme caf:udp, which would imply the use of UDP as transport, with ordering,
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1 class middleman {
2 /// Publishes the given actor ‘whom‘ on ‘path‘
3 void publish(actor_handle& whom, const std::string& path);
4
5 /// Unpublishes the actor on ‘path‘
6 void unpublish(const std::string& path);
7
8 /// Tries to resolve a remote actor on ‘locator‘.
9 /// If no connection exists, the call will establish a

10 /// connection to the remote node first.
11 expected<actor_handle> remote_actor(const uri& locator);
12
13 private:
14 /// Stores the global socket I/O multiplexer.
15 multiplexer_ptr mpx_;
16
17 /// Stores all available backends for managing peers.
18 middleman_backend_list backends_;
19 };

Listing 5.5: Proposed API of the middleman

delivery, and BASP. An authority holds addressing information of the host, such as an
IP or a domain and a port. Locators specify the path on the remote system.

5.3.4 User Facing API

The new design also requires a user facing API to grant access to the functionality of
the stack. Thus, a so-called middleman is proposed, which provides an API to do so.

Listing 5.5 shows the proposed interface of the component. The provided functionality is
limited to two functions: publish and remote_actor. publish publishes a local actor
for the given path so that it can be resolved remotely for actor communication over
the network. remote_actor does twofold: connecting to the remote node if necessary
and resolving remote actors. If a connection to the remote node already exists, the
connecting step is omitted and the existing connection is used.

Resolving an actor remotely is a core functionality of the network stack and important for
building distributed systems. Figure 5.4 visualizes the resolving of caf:tcp://actor-
framework.org:1337/name/source. Five steps are necessary for this:

1. Acquire the corresponding backend for the scheme.
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Figure 5.4: Example of resolving an actor using an URI

2. Obtain the corresponding endpoint manager for authority.

3. Send a resolve request with the path to the remote node.

4. Remote node sends resolve response with actor id

5. Create actor-proxy and send handle to the middleman.

Using URIs for identifying actors simplifies the design process. Actors can now be
referenced by name, which makes the code more expressive and the purpose of specific
actors more clear. Furthermore, the new process allows including precise error reporting
which goes beyond „Could not connect to node“.

The middleman functions as top-level entity of the whole stack. middleman_backends
are used to represent specific network stack compositions, which the middleman can hold
an arbitrary number of. Each composition consists of a specific transport protocol and
an application stack that is composed of any number of application protocols. Figure
5.5 visualizes this approach.

In the figure, a configuration with two backends is shown: The CAF TCP backend and
the CAF UDP backend which uses ordering and delivery options. In both configura-
tions, BASP is used as top-level application because the stacks are designed for actor
communication. Noteworthy about this visualization is the difference between the stack
layouts for UDP and TCP. TCP can use the individual sockets for representing the
remote endpoints, hence the backend will simply store multiple endpoint_managers

. In this case, each endpoint manager represents a single remote endpoint and stores
their specific application stack instance. For UDP this is not possible which requires the
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Figure 5.5: Visualization of the high-level design

inclusion of a dispatching solution in the stack. The CAF UDP backend holds only a
single endpoint manager which uses the dispatcher to multiplex between any number of
application stack instances.

5.3.5 Serializing

As discussed in Sec. 3.2.1, serializing is a costly task that has to be done at a fitting
place, to limit the introduced performance impact. Additionally, the process can be done
concurrently which can mitigate the runtime overhead significantly. This leaves three
different solutions of where to serialize: In the actor proxy, the BASP application, or
concurrently.
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Figure 5.6: Overview of the proposed design and its components

Serializing in the actor proxy would imply serializing the message before enqueueing it
to the endpoint manager. The overhead is thus added to the runtime of the sending
actor proxy. This approach is beneficial when lots of actors communicate with remote
nodes because it takes the performance overhead out of the multiplexing-thread. Moving
this task to the BASP application does the opposite: It moves the overhead from the
actor-proxy to the multiplexer. This can be beneficial when fewer actors send lots of
data to remote nodes.

The last approach is to completely separate the serializing overhead by parallelizing it.
This approach does not add any performance overhead to either the actor-proxy nor the
multiplexer but will require ordering messages after serializing them. Messaging in CAF
is strictly ordered, which can introduce another performance overhead to the process.

Since serializing messages on the application layer allows for buffer recycling, this is the
approach that has been proposed.
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5.3.6 Actor Communication in the new Design

Sending actor messages using the new design is a straight-forward task. Figure 5.6
visualizes the most important components on each layer for the communication between
two actors running on different nodes.

In this example, the actor on node A (actor A) wants to send a message to the actor
on node B (actor B). To do so, actor A sends a message with the content to an actor
proxy that represents the remote actor B on the local node. The proxy enqueues the
content of this message to the endpoint manager, which is then registered for writing in
the multiplexer. When the write-event is triggered, the endpoint manager will dequeue
the message and pass it to the application stack for processing.

In the stack, the top-level application (in this case BASP) has to serialize the message.
After serializing the message, the resulting bytes are passed to the next application. The
last application will pass the message to the transport, which will write the bytes to its
socket.

The multiplexer on node B will trigger a read-event when the data arrives and execute
the corresponding endpoint manager. It then triggers the endpoint manager to read the
data from its socket and pass it to the application stack. As soon as the data reaches
the BASP application, the actor message is reassembled and delivered to the receiving
actor.

5.4 Example Configurations

The new design allows composing any number of protocols to form full-featured network
stacks. To give some perspective about the capabilities of the design, the following
section introduces three exemplary compositions of stacks.

Figure 5.7 shows three exemplary compositions of the network stack design.

Figure 5.7a shows a composition that uses BASP on the application layer as top-level
application. On the transport layer, it uses HTTP and QUIC as transport extensions,
which are using UDP as a transport layer. This composition allows to tunnel actor
communication through HTTP on port 80 or 443, which can mitigate the interference
of firewalls.
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Figure 5.7: Examplary network stack compositions

Figure 5.7b shows a composition, with which CAF could be used as a web-server. For
this, the transport layer is composed of HTTP on TLS for secure transmission, which is
transmitted over TCP. This composition allows to build an actor-based web-server that
could easily handle vast amounts of clients, which are served by actors.

Figure 5.7c shows a composition that uses the default UDP transport of the new design
in addition to an object-encryption application. This additional application would be
situated on the application layer and encrypt every message, independently from trans-
port security. Thus, this composition allows secure communication over a reliable UDP
transport.

5.5 Discussion of the new Design

The new design of the network layer is significantly simpler than the current design.
Transport protocols can easily be exchanged with the proposed transport layer design.
Furthermore, the new design of the transport abstraction makes it very simple to include
any other transport protocol to the stack. The proposed application design enables the
composition of full-featured protocol stacks. These can easily be configured by composing
protocol components that could be reused for any stack layout.
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By including the middleman backend, each stack composition can be included in par-
allel to other compositions. This allows to use the network stack for multiple fields of
application at once.

In the following section the proposed changes are discussed according to the goals that
have been laid out in Section 5.1.

5.5.1 Code Complexity

The new network stack features explicit and transparent hierarchies across the design,
which makes relations between the components much more clear. Components are now
separated across distinct layers, which allows to easily distinguish their function and pur-
pose in the stack. Furthermore, there are no complex hierarchies among the components
of the stack, which mitigates problems that arise with non-evident relations between
them. The clear separation of concerns removes implicit dependencies among entities,
which further simplifies both comprehensibility and limits the code complexity.

However, the lowering of complexity by including a clearly separated layering approach
for the stack also reintroduced complexity. Since composing the stack relies solely on
templates, many of the proposed components will require at least one template argument.
Furthermore, keeping the interfaces of the components as clean as possible required
further addition of templated functions across the stack. However, the templates that
included to the design are intentionally kept as simple as possible.

5.5.2 Composability

The proposed design increases the composability of the stack with the introduction of
clearly confined components. Both transport and application layers have been decoupled
by this design change, which allows tailoring either of them to the needs of the field of
application. The application layer can now include any number of protocols, which
can be designed separately from each other. The stacking approach in this design does
not rely on strong coupling between the protocols, but a general API for passing data
between the layers.

Furthermore, transport protocols are now strictly decoupled from the application layer,
which enables easily exchanging them for any other transport protocol. This improves
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the composability of the stack significantly, while still offering a high level of abstraction
of the lower levels.

5.5.3 Scalability

BASP is now included in the design in the form of an application protocol that can
be added on the top-layer of the stack. Additionally, application stack instances to a
specific endpoint, which removes the necessity of the monolithic broker-based approach.
Hence, this approach should scale at most linearly in terms of memory and improve
the performance of the stack. Furthermore, the unnecessary extra layer, added by the
design with brokers has been removed completely, which essentially halves the number
of necessary write-events per outgoing message. Both claims about the scalability will
be evaluated in-depth in Chapter 7.
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In this chapter the implementation of the new design for the network stack is shown.
Some noteworthy implementation specifics are explained and the reasoning behind the
implementation decisions is discussed.

6.1 Transport Abstraction

The transport abstraction classes are key components in the design, which provide read
and write access for the socket layer. The implementation currently includes two trans-
port protocols: UDP and TCP. Other protocols, such as QUIC are planned to be im-
plemented and included in the future.

The general process of writing a message is divided into three distinct steps. First,
the message that should be sent is enqueued in the transport abstraction after being
processed in the application layer. The second step is writing the data to the socket and
the third step is recycling the buffers that contained the message.

Enqueuing is done by calling the send function with the message scattered across any
number of buffers. The buffers are then stored in a write queue until they can be written
to the socket. Afterwards, the written buffers are „recycled“, which is done by separating
the buffers into header or payload buffers and storing them in the according caches.

6.1.1 Enqueuing Data to the Transport

For TCP the routines are implemented following a stream-oriented communication model.
Thus, the stream_transport holds a write queue with the type std::deque<std::

pair<bool, byte_buffer>>, which allows to enqueue and dequeue buffers sequen-
tially. std::deque was chosen because accessing it from the front or the back is fast,
which is exactly what is needed for a stream-oriented transmission of data.
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1 /// Send function for stream-oriented transport protocols
2 void send(id_type, span<byte_buffer*> buffers) {
3 if (write_queue_.empty())
4 manager().register_writing();
5 auto i = buffers.begin();
6 write_queue_.emplace_back(true, std::move(*(*i++)));
7 while (i != buffers.end())
8 write_queue_.emplace_back(false, std::move(*(*i++)));
9 }

Listing 6.1: Send function implementation in the stream_transport

Listing 6.1 shows the implementation for the stream-oriented send function. First,
the endpoint manager is registered for writing, if it is not currently registered. This
step ensures that the multiplexer executes this transport as soon as a write-event is
triggered. After that, the buffers are enqueued in the write queue together with a flag
that signals whether the buffer is a header or a payload buffer. Storing the buffers this
way allows accessing the buffers sequentially without losing the header or payload buffer
classification.

For UDP this process is datagram-oriented, thus a different approach had to be imple-
mented. Datagrams have to be sent as a whole, which requires to bundle the buffers of a
single packet together so that they can be sent in one piece. For storing datagrams, the
datagram transport owns a packet queue, which is of the type std::deque<packet>.

The packet struct is an abstraction that bundles all buffers that belong to a datagram.
It also eases the storing in the packet queue of the datagram transport, which is a very
simple task due to the abstraction. Datagrams are passed in scattered representation as
well but should have a maximum accumulated size of the Maximum Transmission Unit
(MTU). Listing 6.2 shows the implementation of the send function in the datagram
transport.

1 void send(id_type id, span<byte_buffer*> buffers) {

2 if (packet_queue_.empty())

3 manager().register_writing();

4 packet_queue_.emplace_back(id, buffers);

5 }

Listing 6.2: Implementation of the send function in the datagram_transport
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Again, the endpoint manager is registered for writing, so that the multiplexer can trigger
a write-event when the socket is ready to take more bytes. After that, the buffers are
stored in the form of a packet instance in the packet queue.

6.1.2 Writing Data to the Socket

Routines for writing data to sockets are different for every transport protocol. The
stream transport abstraction writes bytes sequentially and without preserving message
borders, while datagram-oriented transports preserve the bounds by sending datagrams
with a fixed size.

1 while (!write_queue_.empty()) {

2 auto& buf = write_queue_.front().second;

3 auto data = buf.data() + written_;

4 auto len = buf.size() - written_;

5 auto write_ret = write(handle(), make_span(data, len));

6 if (auto num_bytes = get_if<size_t>(&write_ret)) {

7 written_ += *num_bytes;

8 if (written_ >= buf.size()) {

9 recycle();

10 written_ = 0;

11 }

12 } else {

13 // handle error

14 }

15 }

Listing 6.3: Implementation of the write routine for stream-oriented transport protocols

The write-routine of the stream transport is shown in Listing 6.3. This routine will
write as much data as possible from the write queue to the socket in a single call. It
will either stop when the write queue has been drained or a socket error is issued which
has to be handled. Some errors are unrecoverable, thus this type is propagated to the
endpoint manager which will be stopped and removed from the multiplexer. EAGAIN
errors signal a full socket buffer, which is handled by stopping the writing process and
trying again later.
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After the write call is done, the write-result is interpreted and compared with the total
amount of bytes in the byte_buffer. If all those bytes have been written, the buffer is
recycled and moved back to the corresponding cache for future messages.

UDP is implemented with the use of gather-scatter I/O, which allows assembling packets
that should be sent from any number of buffers. This routine is shown in Listing 6.4.

1 while (!packet_queue_.empty()) {

2 auto& packet = packet_queue_.front();

3 auto ptrs = packet.get_buffer_ptrs();

4 auto write_ret = write(handle_, ptrs, packet.id);

5 if (auto num_bytes = get_if<size_t>(&write_ret))

6 recycle();

7 else

8 // handle error

9 }

Listing 6.4: Implementation of the write-routine for datagram-oriented transport
protocols

Since the packet queue holds packet instances, the first step of writing a datagram is
to obtain the buffers from the packet. These are then sent in a single write call, which
preserves the composition of individual packets. The packet.id field holds the endpoint
information to which the packet should be sent.

6.2 Packet Writer Decorator

Composing application protocols in the new design is done by recursively stacking
them into each other. For this, each protocol component has a template <class

Application>, with which the type of the following layer is defined. This helps to
implement each component without coupling it to another.

Two problems arise from introducing the stacking approach: propagating function calls
throughout the stack and appending headers to messages on each layer. Propagating
function calls throughout the stack is simple but clutters the individual implementations
of the components since some functions are never used by the component itself. Thus, a
so-called packet_writer_decorator has been implemented, which decorates the call-
ing layer with the transport instance. Functions that always have to be redirected to
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the transport can be called directly instead of going through every single application of
the stack. This approach allows omitting functions in the application implementation,
which keeps the components cleaner and simpler.

When messages are processed, the orientation is always clear: Header first, then the
payload. Thus, the process of prepending headers to messages on every layer has to
be implemented in a general way, since an arbitrary number of layers can be added to
the stack. For this, a templated send function has been included in the decorator that
allows passing any number of buffers to the previous layer. The function is shown in
Listing 6.5.

1 /// Send a message consisting of multiple buffers.

2 template <class... Ts>

3 void send(Ts&... buffers) {

4 object_.send(parent_, buffers...);

5 }

Listing 6.5: send function implementation in the packet_writer_decorator

The transport protocol abstraction expects a span<byte_buffer*>, so that the buffers
can easily be moved into the write queue. This step requires a translation of the variadic
template, which is done in the worker. The worker provides a send function that takes
the variadic template and rearranges it into a span<byte_buffer*>, which can then
be passed to the transport. Listing 6.6 shows the implementation of this function.

1 /// Sends a message consisting of multiple buffers.

2 /// The vararg ‘buffers‘ is rearranged and passed

3 /// to the transport in the form of span<byte_buffer*>.

4 template <class Parent, class... Ts>

5 void send(Parent& parent, Ts&... buffers) {

6 byte_buffer* bufs[] = {&buffers...};

7 parent.send(id_, make_span(bufs, sizeof...(Ts)));

8 }

Listing 6.6: send function implementation in the transport_worker

This implementation allows sending any number of buffers, without having to limit or
specify the number beforehand. However, it also is a more complex approach to solving
this problem, since variadic templates are not easily understood without experience in
C++.
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6.3 Endpoint Dispatching

The new design revolves around the decision to couple application stack instances to
remote endpoints by assigning them to the endpoint managers. This approach is suf-
ficient for TCP because each socket (and thus endpoint manager) represents a single
endpoint. Stateless protocols such as UDP on the other hand are not limited to this
coupling. Thus, a dispatching layer for such protocols has been included that allows
assigning multiple application stacks to a single endpoint manager.

The dispatching layer multiplexes between a single endpoint manager and the corre-
sponding application stack for a remote endpoint. For the dispatching of the received
data, the endpoint information is used in the form of an id_type. This allows to couple
application stacks to remote endpoints for stateless protocols such as UDP too. Figure
6.1 visualizes the approach.

1 if (auto worker = find_worker(id))

2 return worker->handle_data(parent, data);

3 auto locator = *make_uri(to_string(id));

4 if (auto worker = add_new_worker(parent, make_node_id(locator), id))

5 return (*worker)->handle_data(parent, data);

6 else

7 // error

Listing 6.7: Dispatching a function call to the corresponding application stack
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For the multiplexing, the dispatcher owns two maps in which the stacks are coupled either
to the corresponding endpoint information or the URI of the remote node. Mapping the
application stacks is done by introducing a component called transport_worker, which
represents the application stack within the dispatcher. The worker introduces a defined
first layer to the stack instances and instantiates decorators to pass to the stack on a
function call. Furthermore, it holds the endpoint information, with which the stack is
identified. This is necessary for when an application protocol wants to set a timeout,
since when the timeout is triggered, the correct application stack has to be identified.
Thus, the set_timeout function in the transport_worker passes the id_type to the
transport, so that on the way back the timeout can be dispatched according to it.

Passing data to a stack does either of two things: acquiring an existing stack instance
or creating a new one. Acquiring an existing instance is done by calling find_worker,
which searches the map for the corresponding worker and returns it. If the endpoint is
unknown by now, a new stack is instantiated and added to the maps before dispatching
the data to it. Listing 6.7 shows this routine for the receive_message function, which
is called after receiving data from the socket.

6.4 Timeouts

Timeouts are essential means to create time-triggered behavior. Protocols can use them
to issue retransmits of packets, deliver messages, or simply schedule tasks that should
not depend on events that are triggered unreliably. Hence, the implementation of the
new network stack provides an API for setting and resetting timeouts.

CAF provides the actor_clock for managing and triggering timeouts. This component
sends actor messages to actors when a timeout occurred, hence for the implementation
of timeouts in the network stack a timeout_proxy was included. The proxy receives the
timeout_message and enqueues it in the endpoint manager queue, which will propagate
it when a write-event is triggered. This is necessary, because the actor_clock and
the network stack are both scheduled in different threads, which could introduce race-
conditions without synchronizing the dispatching.

In Listing 6.8 the implementation of the enqueue function in the timeout_proxy is
shown. It receives the message sent by the actor_clock, unwraps the containing
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timeout_message, and enqueues the values in it to the endpoint manager queue. Dur-
ing this process, the corresponding endpoint manager is registered for writing, so that
the enqueued event can be handled by it without relying on an outgoing message.

1 void enqueue(mailbox_element_ptr msg, execution_unit*) {

2 if (!dst_)

3 return;

4 if (msg->content().match_elements<timeout_msg>()) {

5 auto tout = msg->content().get_as<timeout_msg>(0);

6 dst_->enqueue_event(tout.type, tout.timeout_id);

7 } else {

8 CAF_LOG_ERROR("timeout_proxy received wrong message");

9 }

10 }

Listing 6.8: Implementation of the enqueue function in the timeout_proxy

Timeout messages contain a type and an id that can be used by the application stack
to identify, which timeout has been triggered. The type of the timeout message is used
to identify the receiving layer, while the id identifies the specific timeout that has been
set before-hand.

Setting timeouts is done by calling the set_timeout function on the endpoint manager.
The implementation of the function is shown in Listing 6.9.

1 template <class... Ts>

2 uint64_t set_timeout(time_point tp, string tag, Ts&&... xs) {

3 auto act = actor_cast<abstract_actor*>(timeout_proxy_);

4 sys_.clock().set_multi_timeout(tp, act, std::move(tag),

next_timeout_id_);

5 transport_.set_timeout(next_timeout_id_, std::forward<Ts>(xs)

...);

6 return next_timeout_id_++;

7 }

Listing 6.9: Implementation of the set_timeout function in the endpoint_manager

6.5 Transport Extensions

CAF opts for ordered and reliable communication since it is easier to design and imple-
ment software that communicates over the network with these guarantees. Thus, two
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reliability options for the use with UDP have been implemented so that actor commu-
nication can be done reliably even over UDP. Furthermore, sinc IP fragementation is a
feature that can introduces higher loss-rates and processing overhead, a slicing layer has
been implemented.

Delivery

The reliability option delivery handles retransmitting messages in case they have been
lost during the transmission. Each datagram that is sent to a remote node has to be
acknowledged, which signals the successful transmission. If such an acknowledgment
(ACK) is missing for a certain amount of time, the packet is retransmitted.

For this, the implementation of this reliability option holds a queue for all transmitted
packets. Each time a message is passed through this layer, it is copied into a buffer,
which is then stored in the queue until an acknowledged is received.

1 if (hdr.is_ack) {

2 remove_unacked(parent, hdr.id);

3 } else {

4 // Send ack.

5 auto buf = parent.next_header_buffer();

6 binary_serializer sink(parent.system(), buf);

7 if (auto err = sink(delivery_header{hdr.id, true}))

8 // error

9 parent.write_packet(buf);

10 // Pass remaining data to next layer.

11 }

Listing 6.10: Implementation of the receive function of the delivery application

Listing 6.10 shows the implementation of the receive_datagram function. Each mes-
sage can either be an ACK of a previous message or a message from a remote node. If
it is an ACK, the message queue is searched for the id of the ACK, which will then be
removed. In case of a new message from a remote node, an ACK is directly enqueued
to the transport and the message is passed on to the next layer.
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1 auto hdr = parent.next_header_buffer();

2 binary_serializer sink(parent.system(), hdr);

3 if (auto err = sink(delivery_header{id_write_, false}))

4 // error

5 add_unacked(parent, id_write_++, hdr, buffers...);

6 parent.write_packet(hdr, buffers...);

Listing 6.11: Implementation of the write_datagram function of the delivery
application

Listing 6.11 shows the implementation of the write_datagram function. It processes
outgoing messages by copying them into the message queue for eventual retransmission.
This is a complex task since the message is scattered across several buffers and also in
the form of variadic templates, which cannot easily be concatenated. Thus, an insert

function has been implemented that takes a variadic template and concatenates it in a
single buffer for storing it. The function is shown in Listing 6.12.

The function first asserts that the type of the template is equal to byte so that any bugs
can easily be found. After that, the buffers from the template are concatenated in the
buffer with the help of fold expressions. This construct allows applying a specific action
to all template arguments, which is very helpful when using variadic templates.

1 // Inserts variadic template ‘bufs‘ into a single buffer ‘buf‘.

2 // Necessary for saving unacked packets until they are ACKed.

3 template <class... Ts>

4 void insert(byte_buffer& buf, Ts&... bufs) {

5 static_assert((std::is_same_v<byte, typename Ts::value_type> &&

...));

6 (buf.insert(buf.end(), bufs.begin(), bufs.end()), ...);

7 }

Listing 6.12: Implementation of the insert function of the delivery application

Ordering

The reliability option ordering guarantees ordered communication. Every message that
is passed through this layer is extended with a sequence number, which can be used to
withhold datagrams that arrive out of order. This feature is especially useful in combi-
nation with the delivery layer, which does not preserve ordering within the retransmitted
messages.
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The ordering application preserves ordering by storing packets with a wrong sequence
number until all previous messages have arrived. Since messages can be lost, two further
functions have been added to the implementation, which prevents starving the following
layers if no packets arrive for an extended time. First, a maximum for the number of
withheld packets has been added, which allows to deliver all waiting packets in case many
packets are arriving before the missing one could be received. When this maximum has
been reached, all messages are delivered, disregarding the correct sequence numbers.

The second function is a timer-based delivery. Each time a packet is received, a timer is
set, which triggers the delivery of all pending messages on timeout. All pending messages
are delivered, in case the previous messages are lost and the sender has stopped sending
messages. Listing 6.13 shows the implementation of the receive_datagram function.

1 ordering_header header;

2 binary_deserializer source(writer.system(), received);

3 if (auto err = source(header))

4 // error

5 if (header.sequence == seq_read_) {

6 ++seq_read_;

7 cancel_timeout(writer, seq_read_);

8 if (auto err = application_.handle_data(

9 writer, make_span(received.data() + ordering_header_size,

10 received.size() - ordering_header_size)))

11 // error

12 return deliver_pending(writer);

13 } else if (is_greater(header.sequence, seq_read_)) {

14 return add_pending(writer, received, header.sequence);

15 }

Listing 6.13: Implementation of the receive_datagram function of the ordering
application

Sending datagrams through the ordering application is much simpler. The only task the
application has to accomplish is the addition of a sequence number. Thus, a header is
added to the datagram, which is then passed to the underlying layer. This routine is
shown in Listing 6.14.

1 auto hdr = parent.next_header_buffer();

2 binary_serializer sink(parent.system(), hdr);

3 if (auto err = sink(ordering_header{seq_write_++}))

4 // error
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5 parent.write_packet(hdr, buffers...);

Listing 6.14: Implementation of the write_message function of the ordering application

Slicing

A slicing layer has been included in the implementation, for the use with datagram ori-
ented transport protocols. This layer has the task of slicing large datagrams into feasibly
large chunks that can be transmitted over networks with a small Maximum Transmission
Unit (MTU). Furthermore, UDP, for example, has a fixed maximum datagram size of
65.535 bytes, which will drop data when the amount of data exceeds this boundary.

The implementation of the slicing layer focussed on two things: Slicing outgoing data-
grams when necessary and reassembling received datagrams. For this, a slicing header
was introduced that specifies the total number of slices and the individual number of each
slice that arrived. Outgoing messages are represented in the form of multiple buffers,
which requires concatenating them before further processing. The concatenated packet
is then sliced into fragments of a configurable max_fragment_size size and preceeded
with a header.

Reassembling such fragmented datagrams requires storing the data in a queue that
holds each fragment until they have all been received. In that case, the fragments are
all concatenated in a single buffer and passed on to the next layer.

However, this implementation introduces a very significant runtime-overhead, due to the
frequent copying for concatenating buffers. It should be redesigned and implemented
without the copying before it can be used for time-sensitive software.
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In Chapter 5, design goals have been set that will be evaluated in this chapter. Thus, this
chapter proposes benchmarks that aim to provide valuable insight to the performance
of the new design. However, before showing the benchmark results, efforts to validate
the design are presented, which have been implemented along the stack itself.

7.1 Validation

Before the implementation of the new network stack design can be evaluated, it has
to be validated. The correct functionality of the implementation is vastly important if
performance measurements should be done. Bugs in the implementation can distort the
results, which has to be prevented to generate comparable results. Thus, this section
shows the steps that have been taken to ensure that the implementation is correct and
behaves as intended.

CAF bundles a test-framework called libcaf_test, which can be used to implement
tests for it. With this framework, the implementation of the network stack has been
thoroughly unit and system-tested. Each component in the stack has a separate unit-
test, which ensures that the implementation is correct and valid. Furthermore, for the
correctness of the whole system, some test-cases for more complex compositions have
been added.

7.1.1 Unit Testing

Unit testing is an approach with which every unit of a larger system is tested by itself to
ensure its correct functionality. It enables finding bugs very early in the implementation
phase, which makes fixing them easier. In CAF most of the components are coupled to
a specific unit-test, that ensures their correct functionality.
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Listing 7.1 shows the test-case of the doorman. The doorman has the tasks of accepting
incoming TCP connections, creating endpoint managers for them, and adding them to
the multiplexer. The test-case checks this behavior by creating an endpoint_manager

and adding it to the test-multiplexer. After that, a connection to the port of the
endpoint manager is established, which should be accepted. Since the doorman will add
the newly created endpoint_manager to the multiplexer, the result can be checked by
verifying the number of socket-managers in the multiplexer.

1 CAF_TEST(doorman accept) {

2 auto acc = unbox(make_tcp_accept_socket(auth, false));

3 auto port = unbox(local_port(socket_cast<network_socket>(acc)));

4 auto acceptor_guard = make_socket_guard(acc);

5 CAF_MESSAGE("opened acceptor on port " << port);

6 auto mgr = make_endpoint_manager(mpx, sys,

7 doorman<application_factory>{acceptor_guard.release(),

8 application_factory{}});

9 CAF_CHECK_EQUAL(mgr->init(), none);

10 auto before = mpx->num_socket_managers();

11 CAF_CHECK_EQUAL(before, 2u);

12 uri::authority_type dst;

13 dst.port = port;

14 dst.host = "localhost"s;

15 CAF_MESSAGE("connecting to doorman on: " << dst);

16 auto conn = make_socket_guard(

17 unbox(make_connected_tcp_stream_socket(dst)));

18 CAF_MESSAGE("waiting for connection");

19 while (mpx->num_socket_managers() != before + 1)

20 run();

21 CAF_MESSAGE("connected");

22 }

Listing 7.1: Test-case for the correct functionality of the doorman

Since this test relies on the use of networking facilities, this test-case would not be de-
terministic. Hence, a test-multiplexer is used, which does not run in a dedicated thread.
This allows to control the triggering of events manually, which allows for deterministic
test-cases.
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7.1.2 System Testing

Unit-tests are a valuable approach to testing components individually, but testing com-
positions of them is equally important. In the resulting software system, the components
are used in a composed way, which cannot be verified individually. Thus, system-tests
are added as well, to verify the correct implementation of the composed system.

These tests aim to check actual actor communication using the network backend. For ex-
ample, a ping pong test-case is included, which tests the resolving process, sending, and
receiving actor messages using the TCP backend. With such test-cases the interoper-
ability of the components is checked and verified for the future altering of components.

7.2 Benchmarks

The evaluation of the new network stack in CAF considers two performance metrics:
The throughput and the latency. For this, two benchmarks are proposed, which simulate
different types of work-loads for the stacks so that the performance can be measured.
For the throughput measurements, a streaming-benchmark is proposed, which transmits
large amounts of data between many nodes. For the latency measurements, a ping pong
benchmark is proposed, which exchanges a number of messages and waits for the answer
of the remote node.

All benchmarks in this section have been conducted on a machine with 128 cores and
512GB RAM running Ubuntu 18.04. The configuration of the actor systems has been
tuned, so that exactly a single thread for the scheduling of actors and another one for the
I/O backend are spawned. Thus, the benchmarks have been executed with configurations
up to 64 remote nodes that participate in the communication. Furthermore, for the
communication real TCP sockets have been used, which communicate over the localhost
interface.

7.2.1 Throughput of the Network Stack

Throughput was one of the performance goals, that have been set in Chapter 5. To
measure the throughput, a streaming-benchmark is proposed that uses the network
layer to stream data concurrently to a number of remote nodes. However, measuring
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Figure 7.1: Streaming benchmark results for 1 to 64 concurrently served remote nodes

the throughput by itself is not sufficient, since it does not take the scaling capabilities
of the stack into consideration. Thus, the benchmark gradually increases the number of
remote nodes, which the data is sent to.

The data that is sent consists of a sequence of uint64_t (8 byte) integer values. These
values are counted on the remote node and the total number is saved every second, which
is possible because the values are passed to the remote actor individually. On each node,
one stream source was spawned which communicates with a stream sink on the central
node via a TCP socket.

In Figure 7.1, the results for the streaming benchmark are shown for libcaf_io and
libcaf_net. The x-axis maps the number of remote nodes and the y-axis shows the
accumulated number of values that have been received every second. The graph shows
that libcaf_net has similar capabilities in terms of throughput compared to libcaf_io
. Both designs have a maximum throughput of about 21 million values, which is what
was aimed for in Chapter 5.
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Noteworthy about the result is the fluctuation of the throughput of libcaf_io. In
comparison, libcaf_net shows a much more stable behavior, especially with more than
30 remote nodes.

7.2.2 Latency of the Network Stack

The latency of the new design has been evaluated with a ping pong benchmark that
exchanges messages between a local and a remote node. Since actors can only react
upon receiving a message, this type of benchmark is well-suited for the evaluation of the
latency. The duration of the processing on both nodes directly affects the number of
round-trips that can be fulfilled within a certain time. Thus, the benchmark is capable
of capturing the latency of the stack.

The proposed ping pong benchmark consists of two types of actors: ping and pong
actors. Ping actors send ping-messages to a remote node, which are answered by pong-
actors with a pong-message. Upon receiving pong-messages, the ping-actor increments
a counter, which is saved and reset every second.

To be able to evaluate the scaling-capabilities of both stacks in such a setup, the number
of participating pong-actors is gradually increased. This increases the number of sockets
that have to be managed by the multiplexer and simulates a more realistic workload for
it.

Figure 7.2 shows the result for a simple pingpong configuration, scaled across 1-64 nodes.
In this setup, the ping-actor sends a single ping-message to each remote node. The x-
axis shows the number of remote nodes that participate in the communication, while the
y-axis shows the accumulated number of received pong-messages per second. Each pong
is essentially a representation for a round-trip between the ping and a pong actor.

The results show that libcaf_net poses problematic behavior for both UDP and TCP.
The total number of pongs starts to converge between 40-50 thousand round-trips per
second, which is about half of the amount libcaf_io is capable of. This result shows
that the latency of the implementation in libcaf_net is much higher than the latency in
libcaf_io. The reason for this behavior however, cannot be analyzed with a pingpong
benchmark, hence an in-depth analysis is required to find the reason behind the issue
with the latency.
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What can be observed however, is that the reason most-likely has nothing to do with
the protocol in use. Both UDP and TCP behave very similarly and converge at around
the same number of roundtrips.

Comparing Processing-Overheads of libcaf_io and libcaf_net

To achieve a better understanding of what impairs the latency of the new design, a more
precise analysis is necessary. The ping pong benchmark offers a good first impression
but hides a lot of valuable information. Thus, the next step is to identify the task that
requires most of the time, to be able to identify the issue.

This has been done by taking timestamps throughout the stack for sending and receiving
messages to and from a remote node using TCP. Both libcaf_io and libcaf_net have
been taken into consideration, so that a comparison of both results could be done. Figure
7.3 plots the results of the measurements.

The plot shows that the processing of incoming and outgoing messages takes significantly
longer in libcaf_net. Processing incoming messages requires about 30µs longer, while
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Figure 7.3: Durations of processing messages in both the old design (libcaf_io) and
the proposed design (libcaf_net)

processing outgoing messages requires even more time with over 60µs more. This shows
that there must be a bug in the implementation of libcaf_net, which has to be inves-
tigated further.

Detailed Analysis of the Processing-Overhead in libcaf_net

The approach of taking timestamps has been repeated in more detail, which leaves
the results incomparable to libcaf_io. Since the implementations differ greatly, the
following results only show libcaf_net. For this analysis, one message per second was
sent to a remote node, which ensures that the stack is in an idle state at the time of
taking timestamps. Thus, allowing to capture the worst-case behavior of the stack.

Figure 7.4a shows the detailed results for processing outgoing messages. For this, the
stack was divided into six individual section, which are divided as follows:

send This section captures the send call of the actor, which creates a message, and
passes it through the actor proxy to the endpoint manager.
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Figure 7.4: Detailed analysis of durations in the new network stack design

enqueue This section captures the enqueuing of the message to the endpoint manager.

event This section shows the duration that the multiplexer requires until a socket-event
is triggered. The overhead of this section can not be avoided as it is imposed by
the poll implementation in the OS.

dequeue This section shows the dequeuing of a message from the endpoint manager.

application This section includes threefold: Traversing the application stack, processing
the message and enqueuing it to the transport abstraction.

write This section includes the process of writing a single message to the socket.

In the analysis, a positive result can be observed: The application stack abstraction
does not introduce noticeable overhead. Traversing the stack and processing outgoing
messages combined requires an expected but in no way excessive amount of time.

However, three sections in the stack introduce an unexpectedly large overhead, which
has to be analyzed further. First, the process of enqueuing and dequeuing messages
to and from the endpoint manager both require significant durations. Multiple actors
can concurrently enqueue messages to the queue, which can lead to race-conditions.
Thus, the access has to be synchronized which adds overhead to the actual process of
enqueuing messages. Furthermore, the whole queue is built using nodes that have to
be heap-allocated. This approach introduces a second performance overhead, which is
actually not necessary.

Initially, the message-queue was introduced for storing the message and its serialized
counterpart, since the messages have been serialized in the actor proxy. Due to a design
change, the serialization was moved to the application stack, without altering the queue.
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However, actor messages themselves can be linked together to form such a linked-list,
which leads to the queue unnecessarily allocating memory that is not actually needed.

The second critical section is the writing of data to sockets. It requires a very significant
amount of time, which is introduced by the multiple system-calls required for writing
multiple buffers to the socket. The new design proposed a scatter-gather I/O API, which
allows scattering messages across multiple buffers to avoid copying data. However, the
implementation of the transport abstraction writes each buffer sequentially, which takes
at least two write-calls per message.

Figure 7.4b shows the results of the timing-analysis for receiving messages. The whole
process of processing incoming messages is much simpler than sending them. However,
the path of a single message could still be separated into several sections:

read This section includes the read call for the header on the socket.

basp This section includes passing the received message to BASP and starting a worker
for processing it.

process This section includes the processing of the received message.

deliver This section includes delivering the message to the recipient.

The figure shows that the way through the BASP application and the processing both
take a significant amount of time. This is due to the approach of using deserializing
workers, which concurrently deserialize messages before delivering them. Implementing
this process concurrently introduces a performance overhead because both acquiring a
worker instance and starting it are expensive tasks. Synchronization and copy over-
heads add up and form a significant overhead. However, this approach is also used in
libcaf_io, which shows that this approach should be much more performant. Most
likely, the implementation in libcaf_net has a bug that impairs the performance in
this way.

7.2.3 Discussion

The evaluation of the new design has shown that the goals of realizing a stackable
application abstraction layer could be met. Application protocols can be included and
composed in any way, which allows building complex network stacks. Especially the
measurements with UDP have shown that the composable design works well. The precise
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measurements of the stack in Figure 7.4 have shown that the introduced performance
overhead by the layering approach is very small.

Furthermore, the throughput goal for the design could be met, which was shown in the
streaming-benchmark. The results in Figure 7.1 show that the implementation of the
new design is as performant as the current implementation in libcaf_io.

However, the implementation of the design still has issues that have to be fixed before
the stack can be used as the default network backend for CAF. These issues manifest
themselves in the form of very high latency which can be explained with three reasons:

1. The message queue introduces significant runtime-overhead when enqueuing and
dequeuing messages.

2. The process of sending messages via TCP is implemented imperformantly.

3. Processing and delivering incoming messages using concurrent workers is imper-
formant for small loads.

The message queue that is used by the endpoint manager is a key feature of the design
that decouples actors from the network layer. Outgoing messages are stored in the
queue in a singly-linked list, which uses heap-allocated buckets to store the messages.
This heap-allocation introduces an expensive system-call for every message that should
be stored, which is very imperformant.

Furthermore, the approach is not required because the actor-messages are of the same
type as the buckets, which renders the allocation unnecessary. The design initially
proposed to serialize messages in the actor-proxy before enqueuing them, which was
remodeled in the implementation phase. However, the message-queue was not refactored
accordingly, which is a serious flaw in the implementation that has to be reconsidered.

The second issue that has been uncovered, was the implementation of writing data to
sockets. With the proposal of scatter-gather I/O, each message is passed to the transport
layer in multiple buffers, which are stored individually to mitigate the copy overhead for
concatenating them. However, because of this, multiple write-calls for each message are
required until all buffers are written. This adds a significant overhead to the transmission
process, which could otherwise be avoided.

Two solutions are proposed for future approaches: Using writev instead of write or
giving up the scatter-gather approach in-favor of the single buffer approach libcaf_io
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is based on. Giving up the scatter-gather approach has the disadvantage of complicating
the processing of messages on the application layer. Writing headers before packets will
introduce a copy overhead to the message-processing, which is undesirable and thus not
feasible.

Using writev for writing data to the socket is much better suited. It is an OS feature
that allows writing multiple buffers in a single call, which avoids multiple system-calls.
With this approach, the added overhead could potentially be avoided.

The third issue is the latency between the processing of incoming messages. The con-
current deserializing of the messages requires entering multiple synchronized critical sec-
tions, which adds a runtime-overhead. However, since this approach has also been used
in the implementation of libcaf_io, the most feasible reason for the overhead is a bug
in the implementation. The implementation of the process should thus be revalidated
and reevaluated before using the stack in CAF.
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The current design of the network layer in CAF largely grew with the requirements for it.
In it, the transport protocol abstraction has always been tightly coupled to the stream-
oriented model of TCP. Transmission guarantees as well as the detection of the liveliness
of remote nodes were simply inherited from the protocol and hence, never implemented.
Furthermore, the inclusion of application protocols is a requirement that has emerged
but was never implemented in a way that could be used in CAF. This shows that the
current network layer abstraction is very limited in both reliability and extensibility.

This thesis evaluated the problems with the current state and formulated new require-
ments for a reliable network layer abstraction. A new design has been proposed that
aimed to solve the problems with the current design, while also including the new re-
quirements. With the redesign, the strong coupling to TCP was removed, which allows
exchanging it for any other protocol. Guarantees that have previously been inherited by
the transport protocol can now be added as transport extensions. This allows extending
the guarantees and functions of transport protocols and adds versatility to the overall
design.

The application layer was redesigned with the goal of introducing composability to it.
The proposed solution in this thesis relies on application-protocol instances that can be
layered and thus composed in any way. This addition allows building complex composi-
tions of network stacks fast and simple, with reusable components.

A number of application protocols has been included in the design, which are designated
to adding reliability options to simpler transport protocols such as UDP. These protocols
include ordering and delivery options that allow adding reliability features when neces-
sary. Furthermore, a slicing layer has been proposed that handles slicing large messages
into smaller chunks for the transmission over UDP

The process of resolving actors and connecting to remote nodes could simplified signif-
icantly by introducing a URI-based resolving process. With this addition, publishing
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actors can now be accomplished by name rather than binding them to ports of the ma-
chine. It furthermore allowed including more expressive error-categories, which ease the
search for bugs during this process. Thus, making distributing software based on CAF
more robust and simpler to use.

This thesis extensively discussed issues with the current design and proposed solutions
for most of them. Furthermore, a new network layer design for CAF was proposed and
implemented. However, there are still topics that could not be covered. The following
list shows the topics that will be left for future considerations:

UDP The implementation of the datagram_transport is in working condition and
can be used to communicate with remote nodes. Multiplexing the single socket
for communicating with multiple remote endpoints however, still poses problems.
Furthermore, closing the communication and purging the local connection-state
has not been implemented.

Transport Protocols Currently the design only provides transport abstractions for UDP
and TCP. Designs for other transport protocols such as SCTP or QUIC have been
concluded, but not implemented. Hence, these protocols should be implemented
and added to the implementation.

Application Protocols Including application protocols is now easily possible, but only
a limited number of them have been implemented. HTTP, WebRTC, ICE, and
more, would be great additions to the new design.

Encryption Encryption is a topic that has been covered in the design but has not been
implemented.

Performance The state of the current implementation leaves much room for improve-
ment. Especially the evaluation of the latency showed that some bugs might still
be present. Especially, the design of queuing messages and writing data to the
sockets has to be reconsidered to solve the issue.

Documentation The public API of the implementation has been thoroughly commented
and annotated. However, there is no manual for how to use the new stack. Before
the design can be added to CAF, this step should be fulfilled.

77



Bibliography

[1] D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting Actor Programming
in C++,” Computer Languages, Systems & Structures, vol. 45, pp. 105–131, April
2016.

[2] J. Armstrong, Making Reliable Distributed Systems in the Presence of Software
Errors. PhD thesis, Department of Microelectronics and Information Technology,
KTH, Sweden, 2003.

[3] R. Hiesgen, D. Charousset, and T. C. Schmidt, “OpenCL Actors—Adding Data
Parallelism to Actor-based Programming with CAF,” in Programming with Actors -
State-of-the-Art and Research Perspectives (A. Ricci and P. Haller, eds.), no. 10789
in Lecture Notes on Computer Sciences (LNCS), pp. 59–93, Berlin, Heidelberg,
N.Y.: Springer Verlag, 2018.

[4] J. Postel, “Transmission Control Protocol,” RFC 793, IETF, September 1981.

[5] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure Trans-
port,” Internet-Draft – work in progress 29, IETF, June 2020.

[6] J. Postel, “User Datagram Protocol,” RFC 768, IETF, August 1980.

[7] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR Formalism
for Artificial Intelligence,” in Proc. of the 3rd IJCAI, (San Francisco, CA, USA),
pp. 235–245, Morgan Kaufmann Publishers Inc., 1973.

[8] G. Agha, Actors: A Model of Concurrent Computation In Distributed Systems.
Cambridge, MA, USA: MIT Press, 1986.

[9] J. Armstrong, “A History of Erlang,” in Proc. of the third ACM SIGPLAN con-
ference on History of programming languages (HOPL III), (New York, NY, USA),
pp. 6–1–6–26, ACM, 2007.

78



Bibliography

[10] Lightbend Inc., “Akka Framework.” http://akka.io, August 2020. Accessed:
2020-05-23.

[11] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin, “Orleans:
Cloud Computing for Everyone,” in Proc. of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, (New York, NY, USA), pp. 16:1–16:14, ACM, 2011.

[12] D. Charousset, T. C. Schmidt, R. Hiesgen, and M. Wählisch, “Native Actors – A
Scalable Software Platform for Distributed, Heterogeneous Environments,” in Proc.
of the 4rd ACM SIGPLAN Conference on Systems, Programming, and Applications
(SPLASH ’13), Workshop AGERE!, (New York, NY, USA), pp. 87–96, ACM, Oct.
2013.

[13] J. Torrellas, H. S. Lam, and J. L. Hennessy, “False Sharing and Spatial Locality in
Multiprocessor Caches,” IEEE Trans. Comput., vol. 43, pp. 651–663, June 1994.

[14] The Open MPI Project, “Open MPI: Open Source High Performance Computing.”
https://www.open-mpi.org/, January 2020.

[15] M. Aron and P. Druschel, “TCP Implementation Enhancements for Improving Web-
server Performance,” in INFOCOM 1999, 1999.

[16] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing on a space-
division packet switch,” IEEE Transactions on communications, vol. 35, no. 12,
pp. 1347–1356, 1987.

[17] J. Postel and J. Reynolds, “Telnet Protocol Specification,” RFC 854, IETF, May
1983.

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616, IETF, June 1999.

[19] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Transport Layer Protocol,”
RFC 4253, IETF, January 2006.

[20] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The φ accrual failure
detector,” in Proceedings of the 23rd IEEE International Symposium on Reliable
Distributed Systems, 2004., pp. 66–78, IEEE, 2004.

[21] M. Cox, R. Engelschall, S. Henson, B. Laurie, and t. al. t. al., “OpenSSL.”
http://www.openssl.org, 2008.

79

http://akka.io
https://www.open-mpi.org/


Bibliography

[22] C. Amsuess, “OSCORE Implementation Guidance,” Internet-Draft – work in
progress 00, IETF, April 2020.

[23] D. Peleg and E. Upfal, “The generalized packet routing problem,” Theoretical Com-
puter Science, vol. 53, no. 2-3, pp. 281–293, 1987.

[24] J. Postel, “Internet Protocol,” RFC 791, IETF, September 1981.

[25] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-memory
programming,” Computational Science and Engineering, IEEE, vol. 5, no. 1,
pp. 46–55, 1998.

[26] R. Hiesgen, D. Charousset, and T. C. Schmidt, “A Configurable Transport Layer
for CAF,” in Proc. of the 9th ACM SIGPLAN Conf. on Systems, Programming, and
Applications (SPLASH ’18), Workshop AGERE!, (New York, NY, USA), pp. 1–12,
ACM, Nov. 2018.

[27] Hiesgen, Raphael, “Redesigning the Network Layer for Distributed Actors in CAF,”
Master’s thesis, Hochschule für Angewandte Wissenschaften Hamburg, Novem-
ber 2017. https://inet.haw-hamburg.de/thesis/completed/raphael-
hiesgen/@@download/file/MA_raphael_hiesgen.pdf.

[28] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Net-
work Address Translator (NAT) Traversal for Offer/Answer Protocols,” RFC 5245,
IETF, April 2010.

[29] D. C. Schmidt, “The ADAPTIVE Communication Environment: An object-
oriented network programming toolkit for developing communication software,” in
11th and 12th Sun Users Group Conference, 1993.

[30] B. Trammell, M. Welzl, T. Enghardt, G. Fairhurst, M. Kuehlewind, C. Perkins,
P. Tiesel, C. Wood, and T. Pauly, “An Abstract Application Layer Interface to
Transport Services,” Internet-Draft – work in progress 07, IETF, July 2020.

[31] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, C. Perkins, P. Tiesel, and
C. Wood, “An Architecture for Transport Services,” Internet-Draft – work in
progress 08, IETF, July 2020.

[32] A. Brunstrom, T. Pauly, T. Enghardt, K.-J. Grinnemo, T. Jones, P. Tiesel,
C. Perkins, and M. Welzl, “Implementing Interfaces to Transport Services,”
Internet-Draft – work in progress 07, IETF, July 2020.

80

https://inet.haw-hamburg.de/thesis/completed/raphael-hiesgen/@@download/file/MA_raphael_hiesgen.pdf
https://inet.haw-hamburg.de/thesis/completed/raphael-hiesgen/@@download/file/MA_raphael_hiesgen.pdf


Bibliography

[33] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” RFC 3986, IETF, January 2005.

81



Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine

schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „- bei einer

Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw.

§ 21 Abs. 1 APSO-INGI)] - ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und

Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind

unter Angabe der Quellen kenntlich zu machen.“

Quelle: §16 Abs. 5 APSO-TI-BM bzw. §15 Abs. 6 APSO-INGI

Erklärung zur selbstständigen Bearbeitung der Arbeit

Hiermit versichere ich,

Name:

Vorname:

dass ich die vorliegende Bachelorarbeit – bzw. bei einer Gruppenarbeit die entsprechend
gekennzeichneten Teile der Arbeit – mit dem Thema:

Redesigning and Evaluating the Network Stack in the C++ Actor Frame-
work

ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen
sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original

82


	List of Figures
	List of Tables
	Abbreviations
	Listings
	Introduction
	Organization of work

	Actor Programming
	The Actor Model of Computation
	C++ Actor Framework

	Problem statement
	Configurability
	Transport Protocols
	Application Layer Protocols

	Performance of the Network Stack
	Serializing
	Multiplexing

	Resolving Actors
	Encrypting Network Communications
	Overlay Networking

	Related Work
	Inter-Process Communication
	OS Primitives for IPC

	Network Stack Abstraction
	Configurable Networking in CAF
	Netty
	Boost Asio
	The Adaptive Communication Environment

	An Architecture for Transport Services
	Comparison

	Design of the Network Stack
	Goals of the Redesign
	Code Complexity
	Composability
	Reusability
	Scalability
	Performance

	The Network Stack Design
	Fundamental Design Decisions
	Transport Layer Abstraction
	Transport Extensions

	Application Layer Abstraction
	Application Protocol Abstraction
	BASP
	Universal Resource Identifier
	User Facing API
	Serializing
	Actor Communication in the new Design

	Example Configurations
	Discussion of the new Design
	Code Complexity
	Composability
	Scalability


	Implementation of the Network Stack
	Transport Abstraction
	Enqueuing Data to the Transport
	Writing Data to the Socket

	Packet Writer Decorator
	Endpoint Dispatching
	Timeouts
	Transport Extensions

	Evaluation
	Validation
	Unit Testing
	System Testing

	Benchmarks
	Throughput of the Network Stack
	Latency of the Network Stack
	Discussion


	Conclusion and Future Work
	Bibliography
	Selbstständigkeitserklärung

