
BACHELOR THESIS
Lasse Jonas Rosenow

Runtime configuration of
constrained devices via a
shared operating system
module

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelor thesis submitted for examination in Bachelor´s degree
in the study course Bachelor of Science Informatik Technischer Systeme
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Thomas Schmidt
Supervisor: Prof. Dr. Franz Korf

Submitted on: February 1, 2023

Lasse Jonas Rosenow

Runtime configuration of constrained devices via a
shared operating system module

Lasse Jonas Rosenow

Title of thesis

Runtime configuration of constrained devices via a shared operating system module

Keywords

Runtime Configuration, Constrained Devices, IoT, Operating System

Abstract

Many applications on the Internet of Things (IoT) use parameters that need to be
changed at runtime. Typical examples can be authentication credentials, the sampling
rate of a measurement or an LED color. Furthermore in modern industrial spaces run-
time parameters of devices are remotely changeable using plug-and-play capable protocols
such as LwM2M etc.

As of today, RIOT OS does not provide an API for runtime parameters. Instead, each
application needs to implement custom, often redundant logic for its specific use case.
A fully featured integration of external Configuration Managers such as LwM2M proves
to be particularly difficult given the vast amount of drivers and devices that need to be
supported and maintained for every single management tool.

In this thesis we introduce a system-level configuration registry that allows for setting
and getting configuration parameter values at runtime. It organizes parameters accord-
ing to a standardized schema that includes type information and other metadata such
as name and description fields to make them accessible to other modules such as Con-
figuration Managers. The parameter values are optionally persisted on local storage. To
change the parameters we specify a CLI and interfaces to CoAP, MQTT and LwM2M.
Furthermore, we discuss important API design decisions and explain why standardized,
module-independent schemas for common configuration parameters are essential for the
integration of external management tools such as LwM2M.

iii

Lasse Jonas Rosenow

Thema der Arbeit

Laufzeitkonfiguration von eingeschränkten Geräten über ein gemeinsames Betriebssys-
temmodul

Stichworte

Laufzeitkonfiguration, Eingebettete Geräte, IoT, Betriebssystem

Kurzzusammenfassung

Viele Anwendungen im Internet der Dinge (IoT) verwenden Parameter, die zur Laufzeit
geändert werden müssen. Typische Beispiele können Authentifizierungsdaten, die Abtas-
trate einer Messung oder eine LED-Farbe sein. Darüber hinaus sind in modernen Indus-
trieumgebungen Laufzeitparameter von Geräten über Plug-and-Play-fähige Protokolle
wie LwM2M usw. fernveränderbar.

Gegenwärtig stellt RIOT OS keine API für Laufzeitparameter bereit. Stattdessen muss
jede Anwendung benutzerdefinierte, oft redundante Logik für ihren spezifischen An-
wendungsfall implementieren. Eine voll funktionsfähige Integration externer Konfigu-
rationsmanager wie LwM2M erweist sich angesichts der enormen Menge an Treibern und
Geräten, die für jedes einzelne Verwaltungstool unterstützt und gewartet werden müssen,
als besonders schwierig.

In dieser Arbeit wird eine Konfigurationsregistrierung auf Systemebene eingeführt, mit
der man Parameterwerte zur Laufzeit setzen und abzurufen kann. Sie organisiert die Pa-
rameter nach einem standardisierten Schema, das Typinformationen und andere Meta-
daten wie Name und Beschreibungsfelder enthält, um sie anderen Modulen wie Konfigu-
rationsmanagern zugänglich zu machen. Die Parameterwerte werden optional im lokalen
Speicher gehalten. Um die Parameter zu ändern, werden eine CLI und Schnittstellen zu
CoAP, MQTT und LwM2M spezifiziert. Darüber hinaus werden in dieser Arbeit wichtige
Entscheidungen zum API-Design diskutiert und erläutert, warum standardisierte, modu-
lunabhängige Schemata für gemeinsame Konfigurationsparameter für die Integration von
externen Management-Tools wie LwM2M notwendig sind.

iv

Contents

List of Figures viii

List of Tables x

Listings xi

Abbreviations xii

1 Introduction 1
1.1 Context . 1
1.2 The Problem of Runtime Configuration in RIOT OS 1
1.3 Thesis Aims and Objectives . 2
1.4 Thesis Structure . 2

2 Background of (OS) Configuration 4
2.1 The Importance of Configuration . 4
2.2 Static vs. Dynamic Configuration . 4
2.3 Benefits of an Operating System-Level Implementation 5

3 Requirements of a Runtime Configuration System (RCS) 6
3.1 Shared Configuration Schemas . 6
3.2 Multiple Instances per Configuration Schema 7
3.3 Integer Path as the Identifier of Configuration Values 8
3.4 Nested Configuration Groups . 9
3.5 Typed Configuration Parameters . 11
3.6 Binary Internal Configuration Parameter Value Format 12
3.7 Transactionally Commit Configuration Changes 13
3.8 Persistent Configurations . 13
3.9 Low Implementation Effort for Modules/Drivers 13
3.10 Integration with External Configuration Managers 13

v

Contents

4 Related Work 15
4.1 Academic Work . 15

4.1.1 Model-driven Development of Adaptive IoT Systems 15
4.1.2 Architecting Emergent Configurations in the Internet of Things . . 16
4.1.3 CoAP Management Interface (CORECONF) 16

4.2 Implementation Work . 17
4.2.1 Apache Mynewt: Config . 17
4.2.2 Zephyr: Settings . 19
4.2.3 LwM2M Object and Resource Registry 22
4.2.4 Prior Work on RIOT OS . 23

4.3 Assessment of Implementation Work on Thesis’s RCS Requirements . . . 23
4.3.1 Apache Mynewt Config Subsystem 23
4.3.2 LwM2M Object and Resource Registry 26

4.4 Summary of Implementation Work Assessment 28
4.5 Conclusion of Implementation Work Assessment 31

5 Design of the new RIOT OS RCS 33
5.1 Architecture . 33
5.2 RIOT OS Registry . 34

5.2.1 Configuration Schema (CS) . 35
5.2.2 Storage Facility (SF) . 36
5.2.3 Configuration Path (CP) . 37
5.2.4 API and Usage Flows . 38

5.3 Integration of External Configuration Managers 45
5.3.1 Simple Configuration Managers . 45
5.3.2 Advanced Configuration Managers 48

6 Implementation of the RIOT OS Registry 50
6.1 Configuration Schema (CS) . 50
6.2 Storage Facility (SF) . 58
6.3 Configuration Path (CP) . 63
6.4 Application Programming Interface (API) 63

6.4.1 Basic API . 64
6.4.2 Schema Setup API . 67
6.4.3 Storage Facility Setup API . 68

vi

Contents

7 Testing of the Implementation’s Correctness 70
7.1 Test Setup . 70
7.2 Testing the “registry_get” and “registry_set” Functions 70
7.3 Testing the “registry_commit” Function 71
7.4 Testing the “registry_export” Function . 71
7.5 Testing the “registry_save” and “registry_load” Function 72

8 Evaluation of the implementation’s overhead 73
8.1 RAM . 73

8.1.1 Heap . 73
8.1.2 Stack . 73

8.2 ROM . 76
8.2.1 Full Binary Size Comparison . 76
8.2.2 Compiled Object Sizes . 78

9 Future Work 80
9.1 Full Test Coverage . 80
9.2 Exposing Configuration Parameters Beyond Abstraction 80
9.3 Extend Configuration Parameter Value Constraints 80
9.4 External Configuration Manager Implementation 81
9.5 Specification of Sys Configuration Schemas 81
9.6 Integration of the RIOT OS Registry into RIOT OS Modules and Drivers. 82

10 Conclusion 83

Bibliography 84

Glossary 87
Declaration of Autorship . 89

vii

List of Figures

3.1 Per module Configuration Schemas (CSs) (left-hand side) and Shared CSs
(right-hand side). 7

3.2 Single shared instance (left-hand side) and Multiple instances (right-hand
side). 8

3.3 String path (left-hand side) and Integer path (right-hand side). 9
3.4 Flat schema structure (left-hand side) and Nested schema structure (right-

hand side) . 10
3.5 Not typed parameters (left-hand side) and Typed parameters (right-hand

side). 11
3.6 “String as an internal format” (left-hand side) and Primitive type as an

internal format (right-hand side). 12

4.1 Related work influences. 30
4.2 Related work conclusion. 32

5.1 Runtime Configuration Architecture. 34
5.2 The RIOT OS Registry components. 35
5.3 RIOT OS Registry API. 38
5.4 Usage flow of the RIOT OS Registry. 39
5.5 Behavioral flow of the "get" function. 40
5.6 Behavioral flow of the "set" function. 41
5.7 Behavioral flow of the "commit" function. 42
5.8 Behavioral flow of the "export" function. 43
5.9 Behavioral flow of the “load” function. 44
5.10 Behavioral flow of the “save” function. 44
5.11 Behavioral flow of the registration of custom CSs. 45
5.12 Constrained Application Protocol [1] (CoAP) integration. 47
5.13 MQTT integration. 48
5.14 LwM2M integration. 49

viii

List of Figures

6.1 RIOT OS Registry CS implementation data structure. 51
6.2 RIOT OS Registry configuration parameter type implementation enum. . 52
6.3 RIOT OS Registry Schema Instance (SI) implementation data structure. . 52
6.4 RIOT OS Registry Storage Facility (SF) implementation data structure. . 59
6.5 RIOT OS Registry SF Instance implementation data structure. 59
6.6 RIOT OS Registry configuration parameter value implementation structure. 60
6.7 RIOT OS Registry Configuration Path (CP) implementation data structure. 63
6.8 RIOT OS Registry API: get. 64
6.9 RIOT OS Registry API: set. 64
6.10 RIOT OS Registry API: commit. 65
6.11 RIOT OS Registry API: export. 66
6.12 RIOT OS Registry API: load. 67
6.13 RIOT OS Registry API: save. 67
6.14 RIOT OS Registry API: setup CS. 68
6.15 RIOT OS Registry API: Setup SF. 69

8.1 RIOT OS Registry stack consumption in bytes per API function on the
CP lengths 0 - 5. 75

8.2 RIOT OS Registry ROM usage per module (inner circle) and per object
file (outer circle). 79

ix

List of Tables

4.1 M. Config vs. Z. Settings: Read . 20
4.2 M. Config vs. Z. Settings: Write . 20
4.3 M. Config vs. Z. Settings: Apply . 20
4.4 M. Config vs. Z. Settings: Load . 21
4.5 M. Config vs. Z. Settings: Load a single parameter 21
4.6 M. Config vs. Z. Settings: Save . 21
4.7 M. Config vs. Z. Settings: Save a single parameter 21

8.1 Stack consumption of RIOT OS Registry API functions in bytes. 74
8.2 ROM size without any RIOT OS Registry modules enabled. 77
8.3 ROM size of RIOT OS Registry modules and their overhead in bytes and

percentage. 77
8.4 Compiled object file size of RIOT OS Registry modules. 78

x

Listings

6.1 Example CS implementation: registry_schemas.h 53
6.2 Example CS implementation: registry_schemas_init.c 54
6.3 Example CS implementation: registry_schema_rgb_led.c 54
6.4 Example CS implementation: main.c . 56
6.5 Example SF implementation: registry_storage_facilities.h 60
6.6 Example SF implementation: registry_storage_facility_vfs.c 61
6.7 Example SF implementation: main.c . 62
6.8 Get configuration parameter values: C-function. 64
6.9 Set new configuration parameter values: C-function. 65
6.10 Commit configuration parameters: C-function. 65
6.11 Export configuration parameters: C-function. 66
6.12 Load configuration parameter values: C-function. 67
6.13 Save configuration parameter values: C-function. 67
6.14 Schema Setup API. 68
6.15 Storage Facility Setup API. 69

xi

Abbreviations

API Application Programming Interface.

CBOR Concise Binary Object Representation [2].

CG Configuration Group.

CLI Command-Line Interface.

CN Configuration Namespace.

CoAP Constrained Application Protocol [1].

CP Configuration Path.

CS Configuration Schema.

IoT Internet of Things.

JSON JavaScript Object Notation [3].

Mynewt Config Apache Mynewt Config subsystem [4].

RCS Runtime Configuration System.

SF Storage Facility.

SI Schema Instance.

UART Universal Asynchronous Receiver Transmitter.

VFS Virtual File System.

xii

Abbreviations

WLAN Wireless Local Area Network.

YANG Yet Another Next Generation.

xiii

1 Introduction

1.1 Context

For constrained devices, it can be important not only to set certain configurations before
compiling and flashing a device but also while the device is in full operation, for example
to change the rate or precision of a measurement or to update authentication credentials.
Also, it is often required to persist these values, so that a device would keep its config-
uration after a restart caused by a firmware update or power shortage for example. It
is also a common requirement to change these runtime configuration parameters via an
external Configuration Manager that communicates with the constrained device through
WLAN, Bluetooth, a serial bus, etc. Not only smart home, but also more and more
smart city applications require this external configuration management to be based on
a standardized protocol such as LwM2M [5], or the proprietary “matter” standard [6] in
smart home applications. Using a standardized protocol gives the advantage of being
able to automatically integrate a node into already existing systems without the need
to write custom wrappers and also having the freedom to replace them with compatible
devices implementing the same protocol.

1.2 The Problem of Runtime Configuration in RIOT OS

As of today, there is no official way within RIOT OS [7] for modules to expose runtime
configurable parameters, as can be seen in its official documentation [8]. As a conse-
quence, every application needs to implement its own way to work around this, causing a
lot of duplicated work for all vendors using RIOT OS and also leading to large inconsis-
tencies in their custom implementations making it impossible to easily integrate different
devices. For example, if there is a smart bulb vendor “A” and a smart bulb vendor “B”,
which both need to be controlled by a control unit made by vendor “C”, this control unit

1

1 Introduction

would need to implement the custom API of vendor “A” and vendor “B”. Causing not
only a huge amount of unnecessary work for vendor “A” and vendor “B” but also vendor
“C”.

1.3 Thesis Aims and Objectives

In this thesis we aim to investigate how to design an architecture that will extend the
RIOT OS so that modules can expose configuration parameters in a way that they can
easily integrate with external management tools such as LwM2M. We also want to persist
these values beyond device restarts.

1.4 Thesis Structure

In chapter 2 we start by explaining the importance of configuration for constrained devices
and the differences between static and runtime configuration. Furthermore, we discuss
why it is beneficial to implement this feature on an operating system level instead of per
application.

In chapter 3 we explain what kind of requirements the new RIOT OS Registry is supposed
to fulfill and discuss why these requirements are needed.

In chapter 4 we first present existing academic work and discuss similarities and differ-
ences to our requirements. Then we present existing implementation work and analyze in
how much each of it fulfills the in chapter 3 explained requirements. After that, we con-
clude if one of the previously assessed work already fulfills enough requirements to just
be implemented inside RIOT OS as its official Runtime Configuration System (RCS), or
if the architecture for the RIOT OS Registry will only be based on one of the previously
analyzed work but extend its functionality, or if a completely new architecture needs to
be designed and implemented.

In chapter 5 we present the design of the RIOT OS Registry that fulfills all the require-
ments from chapter 3. We explain all the behavioral aspects, API decisions, and how the
specific requirements from chapter 3 are fulfilled.

2

1 Introduction

In chapter 6 we explain the implementation of the in chapter 5 presented architecture,
going more into detail as to how and why the more technical decisions of the API design
were made.

In chapter 7 we explain how the correctness of the main API functions of the in chapter 6
implemented source code is tested.

In chapter 8 we evaluate the overhead of the RIOT OS Registry implementation (see
chapter 6). First, we measure the stack consumption of the main RIOT OS Registry
functions, then we discuss the results of these measurements. Second, we measure the
ROM size of the RIOT OS Registry implementation and also discuss our findings.

In chapter 9 we explain which steps are next to continue on the work of this thesis and
how to further iterate upon it.

In chapter 10 we conclude on how successful this work is in fulfilling its aims set in
section 1.3 and more specifically in chapter 3 and reflect on what lessons we have learned
in the process.

3

2 Background of (OS) Configuration

2.1 The Importance of Configuration

Configuration is a way of making a program flexible, so it can be used in scenarios that
have different requirements and are not compatible with each other, without the need
to maintain multiple versions of the program that are almost identical. It i.e. allows
hiding certain features behind a configuration flag or gives the possibility to change some
internal values by exposing them via an external interface.

2.2 Static vs. Dynamic Configuration

Most applications use static configuration parameters to become more flexible. These
static configuration parameters are set before the source code gets compiled to machine
code and can not be changed after. They are constant values written to the program
storage. Typical use-cases are flags to enable/disable program features or parameters to
configure which pins to use for i.e. I²C on a hardware board. In the RIOT OS, this is
typically done with the help of CFLAGS inside a Makefile [9] or through Kconfig [10]
on more modern setups. The benefit of static configuration is that in cases in which
a dynamic configuration has no benefit, these configuration values are less simple to
accidentally being mutated by some parts of the application as they can not be changed.
In general, every configuration parameter that does not need to be changed at runtime,
as seen in the examples above, should be defined statically.

For some configuration parameters though it is necessary to be able to change them at
runtime. These parameters must be dynamic and not static. A common use-case is a
“smart” RGB bulb. If its color value is static, it can only be changed by recompiling the
program of the RGB bulb and flashing it to the RGB bulb flash storage. But if it is

4

2 Background of (OS) Configuration

dynamic, it can be changed at runtime, without the need to recompile the whole appli-
cation. To change runtime configuration parameters, they can be for example exposed
through a CoAP [1] or LwM2M interface to enable external control.

Static and dynamic configurations can also be mixed by dynamically switching between a
set of statically defined configurations. For example, an application could run in “IDLE”
or “PERF” mode. Then it can be statically defined, what CPU frequency etc. must be
used for “IDLE” or “PERF”. It is possible to dynamically switch between these predefined
modes [11].

2.3 Benefits of an Operating System-Level
Implementation

Implementing a runtime configuration registry on an operating system level means that
it can also benefit from the hardware abstractions provided by it. For example, if the
RIOT OS Registry implements a CoAP API to enable external access to configuration
values, this CoAP API relies on the RIOT OS network stack [12]. This network stack
is then implemented by all the different target devices supported by RIOT OS. This
way the registry works on all the devices supported by RIOT OS and does not need to
implement wrappers for every target device itself.

Besides the hardware abstraction, an operating system level implementation also comes
with the benefit that it can integrate with all the modules/drivers that are already
provided by the operating system itself [13]. This way a RIOT OS application can just
enable the registry feature and automatically get runtime configuration capabilities for
all drivers or modules it depends on. If the registry is written on an application level, it
needs to implement the drivers/modules itself and then integrate them with the registry
on a per-application basis, instead of writing it once for the operating system.

5

3 Requirements of a Runtime
Configuration System (RCS)

To be able to assess how suitable existing related work is, or if it is necessary to design
a completely new architecture to fulfill the requirements for runtime configuration inside
RIOT OS, it is first necessary to define what is needed and why.

3.1 Shared Configuration Schemas

A Configuration Schema (CS) is mostly a data structure combined with some additional
metadata such as parameter types or preconditions. For a Configuration Manager to
be easily integrated into other external tools, it is necessary to have a collection of
CSs to describe common configuration needs. For example, there could be an LED CS
consisting of three unsigned 8-bit integer variables, or a WI-FI CS containing the SSID,
the password, etc. Now, these CSs are supposed to be implemented by for example LED
drivers, or WI-FI module drivers. This way the registry has a consistent API, as can be
seen on the right-hand side of Figure 3.1.

An alternative approach is to define a custom CS per module basis, as can be seen on
the left-hand side of Figure 3.1. This results in a lot of duplicated work and inconsistent
APIs for equal operations. The advantage of this approach is that the work put into
defining the custom CS is less than specifying a CS that has to fit for all comparable
use-cases. So new modules/driver that require a certain configuration module that is for
example not yet implemented in the registry would just specify their own and don’t need
to find a solution for all first. This would save a lot of review time and helps adoption.

If each approach’s advantages and disadvantages are compared, having a consistent API
outweighs the time saving of a per-module approach and is worth spending some extra
time for, as this extra work is not wasted, but essential to enable the integration of

6

3 Requirements of a Runtime Configuration System (RCS)

external Configuration Managers. With no consistent API, those tools would need to be
adapted to every single driver instead of just the CSs, that are shared among modules.

Registry

«driver»

WS2812

«driver»

SK6812

«driver»

UCS1903

«schema»

WS2812

«schema»

SK6812

«schema»

UCS1903

Registry

«driver»

WS2812

«driver»

SK6812

«driver»

UCS1903

«schema»

LED Strip

Shared predefined schemaPer module schema

Figure 3.1: Per module CSs (left-hand side) and Shared CSs (right-hand side).

3.2 Multiple Instances per Configuration Schema

This requirement is strongly connected to section 3.1. Having shared CSs requires that
these can be used at the same time, by multiple modules, as can be seen on the right-
hand side of Figure 3.2, without causing conflicts as can be seen on the left-hand side
of Figure 3.2. If an example application has 3 different LED modules, of which each
implements the same LED CS, they need to expose their data in their instance of this
CS and don’t overwrite each other’s configurations. Besides that even if there is only one
module, that is used to control three LEDs of the same kind, it is also necessary for this
module to create multiple instances so that each LED can be configured on its own.

This means that the CS should not hold the actual data but only specify its structure.
Modules then shall be able to create as many instances of this CS as is needed.

7

3 Requirements of a Runtime Configuration System (RCS)

Registry

«schema»

LED Strip

«driver»

WS2812

«driver»

SK6812

«driver»

UCS1903

«instance»

LED Strip 0

«instance»

LED Strip 2

«instance»

LED Strip 1

Registry

«driver»

WS2812

«driver»

SK6812

«driver»

UCS1903

«schema»

LED Strip

«instance»

LED Strip

All 3 drivers override

each others values!

Single instance Multiple instances

Figure 3.2: Single shared instance (left-hand side) and Multiple instances (right-hand
side).

3.3 Integer Path as the Identifier of Configuration Values

To uniquely identify each configuration parameter a path or array is needed that points
to the parameter. For example “schema_id/instance_id/parameter_id”.

One way to do this is using an array of strings, as can be seen on the left-hand side of
Figure 3.3, inspired by the URI in HTTP [14]. This approach is very verbose, which is
good for integrations such as MQTT [15] or CoAP, which also rely on using string based
identifier paths. It is also significantly less difficult for humans to work with compared
to numbers for example. The downside of using strings is a huge amount of overhead,
especially for constrained devices. Not only in terms of processing power that is necessary
to path strings compared to simple arrays of numbers, but most importantly in terms
of unnecessary payload when accessed remotely. For example through LoRA, which in
some scenarios could make every single byte count [16].

Using integers instead of strings does not come with these issues, but also has some
disadvantages, such as a lower human readability, as can be seen on the right-hand side
of Figure 3.3. But RIOT OS is an operating system for constrained devices and this is
why low connectivity and low power scenarios are more important use-cases than human
readability. Also, if the parameter identifier is based on an integer path, it is possible to
give parameters optional string identifiers to improve the integration of external tools and
also improve human readability. (Besides that modern IoT configuration protocols such
as the CoAP Management Interface (CORECONF) [17] also use integers as identifiers,

8

3 Requirements of a Runtime Configuration System (RCS)

which does not mean it is the right to choose in this case, but still strengthens the
point.)

As a conclusion, integer arrays with optional string metadata fields are a solid solution
for runtime configuration parameter identifiers of constrained devices.

Path

0 7 0 3/ / /

Bytes

/ / /4 4 4 4

= 16 Bytes

Path

sys ieee_802_15_4 cca_mode/ /

Bytes

/ / /3 13 1

= 25 Bytes

/ 0

8

String path Integer path

Figure 3.3: String path (left-hand side) and Integer path (right-hand side).

3.4 Nested Configuration Groups

A CS can either have a nested file system like structure of Configuration Groups (CGs)
(folders) that contain parameters (files) or even more CGs as can be seen on the right-
hand side of Figure 3.4, or on the other hand, it can also be implemented just as a flat
key-value structure as can be seen on the left-hand side of Figure 3.4.

From the implementation perspective, a key-value structure is less difficult to implement,
but it gives the CS less flexibility and could cause workarounds such as long parameter
name tags. For example “group1_group2_group3_parameter0” or “group2_group9_-
group7_parameter5”.

As a conclusion, to give more flexibility it is preferred to have the ability to specify
nested configuration structures, but it is not an important requirement and does not
decide whether a possible implementation is suitable or not.

9

3 Requirements of a Runtime Configuration System (RCS)

«schema»

Temp Press Humid Sensor

«parameter»

last_reading

«group»

oversample

«parameter»

temp

«parameter»

press

«parameter»

humid

«group»

calibration

«parameter»

temp

«parameter»

press

«parameter»

humid

«schema»

Temp Press Humid Sensor

«parameter»

last_reading

«parameter»

oversample_temp

«parameter»

oversample_press

«parameter»

oversample_humid

«parameter»

calibration_temp

«parameter»

calibration_press

«parameter»

calibration_humid

Flat schema structure Nested schema structure

Figure 3.4: Flat schema structure (left-hand side) and Nested schema structure (right-
hand side)

10

3 Requirements of a Runtime Configuration System (RCS)

3.5 Typed Configuration Parameters

The types of configuration parameters must be exposed as can be seen on the right-hand
side of Figure 3.5. This allows defining typed external APIs.

If the type of a configuration parameter is not exposed as can be seen in Figure 3.5, it
can not be passed on to external APIs, allowing errors to occur caused by incompatible
input data.

«schema»

RGB LED

«type: u8»

red

«type: u8»

green

«type: u8»

blue

value: u8

Client

GET "red"

«schema»

RGB LED

«type: unknown»

red

«type: unknown»

green

«type: unknown»

blue

opaque

Client

GET "red"

Not typed Typed

Figure 3.5: Not typed parameters (left-hand side) and Typed parameters (right-hand
side).

11

3 Requirements of a Runtime Configuration System (RCS)

3.6 Binary Internal Configuration Parameter Value
Format

Internally the values of the configuration parameters should be stored and passed around
in their binary representation (their correct c type) as can be seen on the right-hand side
of Figure 3.6 and not converted to some inefficient format such as a string as can be seen
on the left-hand side of Figure 3.6.

The reason for this is that strings have the following drawbacks that are especially prob-
lematic with constrained devices:

1. In most cases strings consume significantly more storage than the corresponding
types needed to represent the same data.

2. Additionally, heap allocation should be avoided on constrained devices as their
storage is usually small and if a program can run or not is best to be known
by making sure if the binary fits on the storage or not. So to work with string
values internally implies always storing the maximum allowed string length for
each parameter, to avoid dynamic heap allocation. This causes an unnecessarily
high amount of storage and possibly stack overhead. By using the concrete types,
the size of each parameter is always exactly known and is never too large.

3. Converting from- and to a string, or comparing strings causes a lot of computing
overhead that can be avoided.

Registry

«schema»

RGB LED

«type: u8»

red

«type: u8»

green

«type: u8»

blue

Client

GET "red"

u8

String as internal format Primitive type as internal format

Registry

«schema»

RGB LED

«type: string»

red

«type: string»

green

«type: string»

blue

Client

GET "red"

u8

string
«converter»

string => u8

Figure 3.6: “String as an internal format” (left-hand side) and Primitive type as an in-
ternal format (right-hand side).

12

3 Requirements of a Runtime Configuration System (RCS)

3.7 Transactionally Commit Configuration Changes

In some situations it is necessary that multiple configuration parameters change their
value at the same time. For example these configuration parameters depend on each
other, such as an RGB LED that has three configuration parameters, one for red, one
for green and one for blue. If these parameters don’t all change at the same time, the
color of the RGB LED will not go from for example red to blue, but from red to black
and then to blue or from red to pink and then to blue. So the RCS must have the
ability to fulfill this need by committing multiple configuration parameter changes in a
transactional way.

3.8 Persistent Configurations

Once a configuration parameter’s value is changed, it muste be possible to persist this
change on a non-volatile storage. This is important because especially constrained Inter-
net of Things (IoT) devices can have power losses, for example if they are operated by
solar energy.

3.9 Low Implementation Effort for Modules/Drivers

The implementation effort that is necessary to get the RCS integrated into each module
must be as low as possible while still fulfilling all requirements defined in this section.

If the implementation cost becomes too high, this not only makes maintainability of mod-
ules/drivers harder but lowers the chance of high adoption of this runtime configuration
module into other drivers/modules in the first place.

3.10 Integration with External Configuration Managers

The RCS must be compatible with common external Configuration Managers. The run-
time configuration module is not supposed to specify how external configuration man-
agement works for example by introducing an official CoAP API but is thought of as

13

3 Requirements of a Runtime Configuration System (RCS)

an internal API that can be used by external Configuration Manager modules that then
expose this API however needed.

Currently planned external Configuration Manager integrations, to which this internal
runtime configuration module must be compatible to are:

• A LwM2M server [5]

• A custom CoAP based API [1]

• A custom MQTT based API [15]

14

4 Related Work

4.1 Academic Work

4.1.1 Model-driven Development of Adaptive IoT Systems

The paper with the title “Model-driven Development of Adaptive IoT Systems”[18] shows
how to develop adaptive IoT systems using a model-driven approach. Its approach is to
first model state machines of all system components using SysML4IoT [19], then use a
publish/subscribe architecture to model the environment information and the relation-
ship within the system. From these state machines then the source code is generated that
can be deployed to the numerous IoT devices. Those devices then change their configu-
ration at runtime (switching to another state), if the system sends them a message that
contains information that leads to a state change based on the state machine implemen-
tation. Also the system state is synchronized with the previously designed model. This
way the system state can be manually changed by changing the state of the model.

Discussion

The approach how to handle runtime configurations of this paper is very different to
our approach. This papers designs the system as a whole first, having the relations
and adaptions of the nodes in this system in mind and also providing manual runtime
configuration through its model. This creates a system that can work very well on its
own, but is not very good in “integrating with the world”. Our goal in this thesis is to
create a RCS for an operating system (RIOT OS), that is constructed the other way
around. Not having the final system in mind, but providing standardized APIs to allow
writing mappings to many standardized external Configuration Managers or protocols
like LwM2M.

15

4 Related Work

4.1.2 Architecting Emergent Configurations in the Internet of
Things

The paper with the title “Architecting Emergent Configurations in the Internet of Things”[20]
explains the Emergent Configurations concept and proposes an architecture for its real-
ization. It further focuses on how Emergent Configurations are formed to achieve user’s
goals and how applications can adapt to runtime context changes. The main idea be-
hind Emergent Configurations is that all devices integrate with each other and change
their configuration / behavior depending on other devices. The paper gives a conference
room as an example, which automatically adjusts its curtains if the projector is used and
depending on what kind of media is presented and if it is properly visible or not.

Discussion

The connection between this work and the RCS for RIOT OS is, that it shows what can
be achieved when having a well designed RCS, that uses shared CSs (see section 3.1)).
Without these stable and reliable interfaces that a shared CS offers, it would be impossible
for so many different devices to communicate so flawlessly as in this paper.

4.1.3 CoAP Management Interface (CORECONF)

The paper with the title “CoAP Management Interface (CORECONF)” [17] specifies a
“network management interface for constrained devices and networks”. It builds on CoAP
to access resources specified in a Concise Binary Object Representation [2] (CBOR)
mapping of YANG schemas [21] and also converts the YANG identifier string to nu-
meric identifiers to save payload size. If specified, YANG schemas can have multiple
instances.

Discussion

This work is similar to the requirements specified in chapter 3 of our thesis, in that it
uses integers as a configuration resource identifier and uses shared configuration schemas
(YANG), which support multiple instances. The paper differs to the requirements of our
thesis in that it does not specify how these configuration changes should be applied /
handled by the local (constrained) device itself. The paper only specifies a protocol for

16

4 Related Work

how to do configurations through the network. The introduced CORECONF protocol
can be used for external configuration management of the new RIOT OS RCS.

4.2 Implementation Work

4.2.1 Apache Mynewt: Config

Mynewt is an embedded OS developed by the Apache Software Foundation. It is similar
to RIOT OS and already comes with a system module for runtime configurations, called
“Config” [4].

It manages configuration parameters as key-value pairs of strings. A key contains a path
to a configuration parameter inside a module. For example the key “id/serial” means the
“serial” parameter of the “id” module. So every module that uses Apache Mynewt Config
subsystem [4] (Mynewt Config), has its own namespace (initial module name, in this
case “id”) to put configuration data and how the configuration path is structured after
the namespace is defined by each module itself. For example the “id” module could have
a configuration parameter under the “id/serial/i2c/instance_1” path. It is also possible
to optionally persist configuration values to storage, so that configurations are not lost
even after a restart of a device.

Internal: Handler

Each module needs to implement a so called “handler” so it can expose configuration
parameters to Mynewt Config. These handlers have a simple API:

“ch_get” Function

This function takes a string key as its input and returns the configuration parameter’s
value as a string.

“ch_set” Function

This function takes a string key and a string value as its input and sets the configuration
parameters value to the given value.

17

4 Related Work

“ch_commit” Function

This function takes a string key as its input, which does not need to point to a concrete
configuration parameter, but could also only point to the module itself or some shorter
path, because this function will be executed on every configuration parameter, that
is within this path. For example the path “id/serial” includes “id/serial/i2c” and also
“id/serial/spi”. This function takes changes that have been previously made by calling
“ch_set” into effect. Just calling “ch_set” only sets a value, but does not apply it. This
way multiple configuration parameter can be set to new values one by one and then are
taken into effect at the same time.

“ch_export” Function

This function takes a string key and a callback function as its input, which does not
need to point to a concrete configuration parameter, but could also only point to the
module itself or some shorter path, because this function will be executed on every
configuration parameter, that is within this path. For example the path “id/serial”
includes “id/serial/i2c” and also “id/serial/spi”. This function finds all configuration
parameters, that are within the given path and exports them by calling the given callback
function and passing their path and their value as an argument.

API

The API contains of 6 basic functions, that cover the most important use cases. It also
includes a few more functions for example to help converting configuration values to and
from strings, but these are not important for our thesis.

Get Configuration Values

It is possible to get the value of a configuration parameter by calling the “conf_get_-
value” function. Internally this function finds the “handler” by the first element of the
given path and calls its “ch_get” function.

18

4 Related Work

Set Configuration Values

It is possible to set a value of a configuration parameter to a new value by calling
the “conf_set_value” function. Internally this function finds the “handler” by the first
element of the given path and calls its “ch_set” function.

Transactionally Commit Configuration Values

It is possible to commit configuration parameters by calling the “conf_commit” function.
Internally this function finds the “handler” by the first element of the given path and
calls its “ch_commit” function.

Save Configuration Values to Storage

It is possible to save configuration parameters to storage by calling the “conf_save”
function. Internally this function finds the “handler” by the first element of the given
path and calls its “ch_export” function, by giving a internal function as its callback value,
that then gets called by the handler’s export function and writes all the configuration
parameters to storage.

Load Configuration Values from Storage

It is possible to load configuration parameters from storage by calling the “conf_load”
or “conf_load_one” function. Internally these functions look into the storage and search
for either, in case of “conf_load_one”, for a specific configuration parameter, or in case
of “conf_load”, for all available configuration parameters. For each parameter, that is
found in storage, the “conf_set_value” function is then called.

4.2.2 Zephyr: Settings

Zephyr is one of the most popular current IoT operating systems. It is part of the Linux
Foundation and backed by large companies such as Google, Meta, Intel and others [22].
Given its huge success, it is interesting to see how this rather large competitor handles
runtime configuration. The system module responsible for runtime configuration within
the Zephyr operating system is called Zephyr Settings [23] and an implementation of
Mynewt Config [4]. Both APIs are mostly the same but have some minor differences.

19

4 Related Work

Zephyr Settings vs. Mynewt Config - API Comparison:

Get Configuration Values

Table 4.1 shows the similarities between the “get” functions of Mynewt Config and Zephyr
Settings. The only real differences besides the usage of different names being that Zephyr
settings returns an integer, while Mynewt Config returns a char pointer and that the
Zephyr settings API does not limit itself to passing only strings, but accepts a void
pointer and has an additional “len” parameter, containing the size of the value.

M. Config char *conf_get_value(char *name, char *buf, int buf_len);
Z. Settings int settings_runtime_get(const char *name, void *data, size_t len);

Table 4.1: M. Config vs. Z. Settings: Read

Set Configuration Values

Table 4.2 shows the similarities between the “set” functions of Mynewt Config and Zephyr
Settings. The only real differences besides the usage of different names being that Zephyr
settings API does not limit itself to passing only strings, but accepts a void pointer and
has an additional “len” parameter, containing the size of the new value.

M. Config int conf_set_value(char *name, char *val_str);

Z. Settings
int settings_runtime_set(const char *name, const void *data,
size_t *len);

Table 4.2: M. Config vs. Z. Settings: Write

Transactionally Commit Configuration Values

Table 4.3 shows the similarities between the “commit” functions of Mynewt Config and
Zephyr Settings. The only real differences besides the usage of different names being
that Zephyr settings API uses a const parameter.

M. Config int conf_commit(char *name);
Z. Settings int settings_runtime_commit(const char *name);

Table 4.3: M. Config vs. Z. Settings: Apply

20

4 Related Work

Load Configuration Values from Storage

Table 4.4 shows the similarities between the “load” functions of Mynewt Config and
Zephyr Settings. The only real differences is the usage of different names.

M. Config int conf_load(void);
Z. Settings int settings_load(void);

Table 4.4: M. Config vs. Z. Settings: Load

Table 4.5 shows the similarities between the “load_one” functions of Mynewt Config and
Zephyr Settings. The only real differences besides the usage of different names being
that Zephyr settings API uses a const parameter.

M. Config int conf_load_one(char *name);
Z. Settings int settings_load_subtree(const char *subtree);

Table 4.5: M. Config vs. Z. Settings: Load a single parameter

Save Configuration Values to Storage

Table 4.6 shows the similarities between the “save” functions of Mynewt Config and
Zephyr Settings. The only real differences is the usage of different names.

M. Config int int conf_save(void);
Z. Settings int settings_save(void);

Table 4.6: M. Config vs. Z. Settings: Save

Table 4.7 shows the similarities between the “save_one” functions of Mynewt Config and
Zephyr Settings. The only real differences besides the usage of different names being
that Zephyr settings API does not limit itself to passing only strings, but accepts a void
pointer and has an additional “len” parameter, containing the size of the new value.

M. Config int conf_save_one(const char *name, char *var);

Z. Settings
int settings_save_one(const char *name, const void *value,
size_t val_len);

Table 4.7: M. Config vs. Z. Settings: Save a single parameter

21

4 Related Work

4.2.3 LwM2M Object and Resource Registry

While LwM2M by itself is a protocol for external runtime configuration management and
not an operating system registry, it still has some appealing aspects that are relevant
to the RIOT OS Registry. Besides the fact that the RIOT OS Registry is supposed
to integrate external Configuration Managers such as LwM2M. Furthermore, it is to be
evaluated if an LwM2M client such as Eclipse Wakaama [24] can be used as the official
RIOT OS configuration registry. This way LwM2M is supposed to become the standard
for RIOT OS configuration management and other management systems count integrate
with LwM2M instead of a RIOT OS-specific registry.

Predefined and typed object definitions

LwM2M comes with its own predefined object definitions. Each object definition has its
own unique ID, name, and other metadata and contains multiple properties (configuration
parameters) that describe the object and can be read (or written) to. The properties
themselves can not contain further child properties. So the property list of an object
definition is always flat. Each property has an ID, a name, a type such as Integer,
Boolean, String etc. and other metadata. For example, there is the object with the
ID 3420. Its name is “LED color light” and it has one property “RGB value” with the
ID 1. This property has the type String and expects a color in the RGB hex format
(#rrggbb).

Multiple instances

The LwM2M protocol allows an object definition to have multiple instances. So multiple
modules/drivers can implement the same LwM2M object or expose multiple instances
of themselves that will be accessible at the same time. For example, a smart lamp
might have multiple LEDs that all expose the same interface, but should be addressed
individually to enable the mixing of different colors.

Integer Resource Path

To identify a property of some object LwM2M uses a path of 3 integers. First comes the
object ID, which is the ID of the object definition. Second comes the instance ID which

22

4 Related Work

is the ID of the very instance of that object, since there can be multiple instances of each
object. And last comes the property ID.

4.2.4 Prior Work on RIOT OS

Before the work on this thesis started, there has already been an initial implementation
of Mynewt Config (see subsection 4.2.1) for RIOT OS as an open PR on its GitHub
repository (see PR 10622 [25] and PR 10799 [26]).

4.3 Assessment of Implementation Work on Thesis’s RCS
Requirements

Besides RIOT OS there are other operating Systems such as Zephyr [22], that may
already provide solutions for managing runtime configurations in IoT. So to find a suitable
architecture to manage runtime configurations in RIOT OS, it is important to evaluate,
if related work already exists, that can fully satisfy all the needs listed in chapter 3.
Besides that, it is important to learn the benefits and drawbacks of related tools to then
decide whether to implement an already existing architecture into RIOT OS or to invent
a new architecture that can benefit from what was learned while evaluating the work
done in competing architectures.

4.3.1 Apache Mynewt Config Subsystem

Advantages

• Configuration Schemas can have a deeply nested tree structure
(see section 3.4)
The configuration parameter identifier of each handler is stored as a simple string
key. This makes it possible to easily have implicit grouping by just defining a
long string with multiple separators. Then internally common groups of multiple
parameters can be processed by the configuration subsystem.

23

4 Related Work

• Low implementation effort for modules/drivers
(see section 3.9)
Every module just implements a set and get function inside a handler, that has
gets or returns values as strings based on the input string, which is the identifier
of a configuration parameter or group.

• Easy integration with some other external Configuration Managers
(see section 3.10)
Some tools that can be used for external Configuration Managers such as CoAP
and MQTT for example can just reuse the configuration parameter path strings as
address or topic. They can be written once and don’t need to be implemented for
every module (handler) of the configuration subsystem.

• Transactionally Commit Configuration Changes
(see section 3.6)
Mynewt Config can transactionally commit multiple configuration changes at once
my calling the “commit” function (see subsubsection 4.2.1).

• Persistent Configurations
(see section 3.6)
Mynewt Config can persistently save configuration values to a non-volatile storage
device by calling the “conf_save” function (see subsubsection 4.2.1).

Disadvantages

• Configuration Schemas are defined per module/driver
(see section 3.1)
There are no shared configuration structure definitions that can be implemented by
different modules. Each module implements its own custom configuration structure.
Even if there are 2 different LED drivers, that do exactly the same except they use
different hardware, they have no shared code.

• No support for multiple instances
(see section 3.2)
The subsystem itself has no construct for how instances might work. The imple-
menting module/driver can of course hack around this by implementing an instance

24

4 Related Work

group as part of the path inside the handler and then internally map it to the du-
plicated devices that shall be configured. But this is a custom solution that will
only make the configuration subsystem unnecessarily complex and inconsistent.

• Path to configuration parameters as string
(see section 3.3)
The identifier of a configuration parameter is a string, which supports nested groups
via “/” separators. In general, the structure of this string can be totally custom per
module/driver, as the modules that implement a configuration handler decide how
to interpret its structure. This causes a lot of overhead in string deserialization
and is easy to cause errors or undocumented inconsistencies.

• Configuration parameters have no type information
(see section 3.5)
Everything is based on strings. The handler implemented by the module must
convert the input string into whatever format it needs. And also the other way
around on return. In that sense, a type is not needed, as the handler takes care
of it with the cost of performance overhead and a more complicated API for the
user. If there are types the user could for example know if a number is needed or
a string, which can be unclear in some scenarios. But this is not the case with this
configuration subsystem.

• Configuration parameter values are stored in the string format
(see section 3.6)
As every parameter value is returned and set as a string value, it also is necessary
to persist it as a string, so that the handler could understand it when it gets read
and passed to it. As strings in most cases use up more storage than primitive values
such as numbers, this can be a problem for constrained devices with not a lot of
memory.

• Difficult or almost impossible integration with some other external Con-
figuration Managers
(see section 3.10)
External Configuration Managers such as LwM2M have their predefined CS struc-
ture called object models. There is for example an object model for a colored
light bulb. If this external Configuration Manager is integrated with the Mynewt
Config, it is necessary to write a mapping for each Mynewt Config handler to the
corresponding object model in LwM2M. Considering that LwM2M is not the only

25

4 Related Work

standard for configuration management this becomes an issue to maintain. Also,
some other simpler Configuration Managers could depend on integer arrays as an
identifier for the configuration parameter. Transforming a string as is used in the
parameter of the Mynewt Config, will always have collisions and is therefore not
reliable.

Conclusion

What is needed is not a registry that is split into modules/drivers, but a registry that
defines data structures that can be implemented by multiple modules/drivers to share
the same interface for identical use cases.

4.3.2 LwM2M Object and Resource Registry

Advantages

• Configuration Schemas are shared between modules/drivers
(see section 3.1)
LwM2M has predefined CSs for common use cases such as WLAN configuration [5]
or location data [5, p. 124] called object models. Modules/drivers can implement
these object models and in this way share the same data structure across similar
use-cases.

• Multiple Schema Instances
(see section 3.2)
Each LwM2M object model can be implemented and instantiated by more than one
model/driver. To identify different instances, the instance_id is part of the integer
path to access configuration parameters: Object model/instance/parameter.

• Path to configuration parameter as array of 3 integers
(see section 3.3)
The path to identify a single configuration parameter consists of 3 integers: Object
Model ID / Instance ID / Parameter ID. This way the payload for requests will
not be increased only because an object model has a long name.

26

4 Related Work

• Configuration parameters have type information
(see section 3.5)
A configuration parameter can have multiple types: String, (Unsigned) Integer,
Float, Boolean, Opaque, Time [5, p. 99]. This helps the user to find out what kind
of value is valid for a given configuration parameter.

• Configuration parameter values can have any internal type (string, int,
binary, etc.)
(see section 3.6)
The values of configuration parameters get set in their primary type and not for-
matted in some higher type such as a “string type” for example.

• Transactionally Commit Configuration Changes
(see section 3.6)
LwM2M has the ability to set multiple configuration parameters at once. If they
are set at once, they would also be committed at the same time.

• Persistent Configurations
(see section 3.6)
The open source LwM2M client implementation called Eclipse Wakaama [24] does
not come with this feature, but it is possible to implement this functionality on top
of it.

Disadvantages

• Configuration Schemas can not have a deeply nested tree structure
(see section 3.4)
More complicated object models with many configuration parameters that can be
logically structured, will have some unnecessary overhead. A structure can still be
simulated by giving names such as: “group_a/group_b/param_c” as parameter
names.

• High implementation effort for modules/drivers
(see section 3.9)
The open source LwM2M client implementation called Eclipse Wakaama [24] has
a high implementation effort for module/driver developers to integrate it. For
instance, the example implementation in the Wakaama Repository of the LwM2M

27

4 Related Work

location object model [5, p. 125], which only exposes 7 values(latitude, longitude,
altitude, radius, velocity, timestamp and speed), already needs 352 lines of code [5,
p. 125].

• Difficult to integrate with other external Configuration Managers
(see section 3.10)
LwM2M is itself an external Configuration Manager and not intended as a middle-
ware that could be integrated with other external Configuration Manager tools. As
a consequence, even though possible, the integration of other configuration tools
with for example the “Eclipse Wakaama” client [24], which already requires con-
siderably a lot of work to integrate itself as explained earlier, is not easily done.
Most importantly to create good external Configuration Manager integrations it is
important to use meta-fields such as “name”, or “description”. Those fields exist in
the LwM2M Object Model Definitions [5, p. 68], but these are only known by the
LwM2M Server and not part of the LwM2M client running on the RIOT OS node
[5]. This way the client cannot expose any human-readable information of its API,
except integer paths and types.

Conclusion

Other Configuration Managers should be supported also. LwM2M is difficult to integrate
with other managers. An interface between RIOT OS and LwM2M is needed. For
example, a new system module called RIOT OS Registry.

4.4 Summary of Implementation Work Assessment

As Figure 4.1 shows, there is a lot to be learned from existing technologies. Especially in
how different their approaches to fixing similar issues are. But not only Mynewt Config
but also OMA LwM2M both on their own do not satisfy the needs of a RIOT OS-wide
registry good enough, to be implemented as a solution to the problem.

The main issue with Mynewt Config is the fact that each module would need to im-
plement the CS on its own, which results in many similar but not identical CSs inside
similar modules/drivers and also prevents the integration of external Configuration Man-
agers such as LwM2M (see subsubsection 4.3.1). Also, the lack of type information for

28

4 Related Work

configuration parameters makes the integration of external Configuration Managers that
rely on type information problematic.

On the other hand, the main issues with OMA LwM2M are a way too large module im-
plementation boilerplate and the high difficulty to integrate other external configuration
managers with the local LwM2M schema.

29

4 Related Work

Yes

Custom per module

Feature

Module

String path

No Yes

Shared predefined
schemas

Multiple schema
instances

Configuration
Schemas

OMA

LwM2M

Mynewt

Config

Parameter
identification

NoYesNested configuration
groups / parameters

No
Parameter types

(string, int8, uint32,
...)

StringInternal parameter
value format

Integer array

Yes

Depends on the
implementation

YesPersistent
Configurations

Any

(defined by schema)

YesTransactional
commits

H

M

M

L

H

L

M

H

Importance

Difficult

HighLow
Module

implementation
boilerplate / expense

"Depends"
Integration with other
external configuration

managers

M

H

Figure 4.1: Related work influences.

30

4 Related Work

4.5 Conclusion of Implementation Work Assessment

The logical consequence is the creation of a new configuration registry that is based on
the concepts of Mynewt Config and LwM2M but only uses those that fit the needs of
the RIOT OS most. It is supposed to keep the simplicity of the Mynewt Config, by also
supporting the advantages of OMA LwM2M. The OMA LwM2M configuration man-
ager can then be implemented through a mapping between the new RIOT OS Registry
configuration parameters and the LwM2M object models.

As can be seen on the right-hand side of Figure 4.2. This new RIOT OS Registry allows
the specification of CSs that are shared by drivers and modules so that every driver
or module that represents the same functionality will also have the same structural
representation of their configuration parameters. This also easily allows the ability to
create multiple instances of the same CS. For example, a traffic light would need 3 LEDs
that use the same CS. The identification of a configuration parameter of the RIOT
OS Registry is a result of its path, which is an array of integers, of which the length
depends on how deeply nested the CS structure is. To improve the integration of typed
configuration managers, the configuration parameters also have metadata containing type
information, but also strings such as “name” or “description” to allow the creation of more
simple APIs for developers. For example a Command-Line Interface (CLI) that allows
using the name field as an alias to the integer array. Internally the RIOT OS Registry
allows the CS to use every available type in the C programming language to specify the
value of a configuration manager that is written to the program storage. To prevent
unnecessary conversion from string to native value and the other way around. The
integration of the new registry into drivers or modules is also supposed to be as simple as
possible. Therefore, an API that is inspired by the Mynewt Config (see subsection 4.2.1)
will be implemented.

31

4 Related Work

Custom per module

Feature

Module

String path

No Yes

Shared predefined
schemas

Multiple schema
instances

Configuration
Schemas

OMA

LwM2M

Mynewt

Config

Parameter
identification

NoYesNested configuration
groups / parameters

No
Parameter types

(string, int8, uint32,
...)

StringInternal parameter
value format

Integer array

Yes

Any

(defined by schema)

Shared predefined
schemas

Yes

RIOT OS

Registry

Integer array

Yes

Low

Yes

Any

(defined by schema)

Easy

H

M

M

L

H

L

Importance

Yes

Depends on the
implementation

YesPersistent
Configurations

YesTransactional
commits

M

H

Difficult

HighLow
Module

implementation
boilerplate / expense

"Depends"
Integration with other
external configuration

managers

M

H

Yes

Yes

Figure 4.2: Related work conclusion.

32

5 Design of the new RIOT OS RCS

5.1 Architecture

The proposed RCS architecture, as shown in Figure 5.1, is formed by one or more Con-
figuration Managers (see section 5.3) and the RIOT OS Registry (see section 5.2). The
RIOT OS Registry acts as a common interface to access Runtime Configurations and
store them in non-volatile devices. All runtime configurations can be accessed either
from the RIOT OS application or the interfaces exposed by the Configuration Managers,
via the RIOT OS Registry. A RIOT OS Application may interact with a Configuration
Manager in order to modify access control rules or enable different exposed interfaces.

Figure 5.1 shows this in more detail. It differentiates between 2 different kinds of Con-
figuration Managers:

Basic Configuration Managers:

These Configuration Managers are a simple representation of the default configuration
structure of the RIOT OS Registry. They only expose the parameters paths as is and
do not map to any special structure.

Advanced Configuration Managers:

These Configuration Managers have their own configuration structure (custom prede-
fined object models etc.) and can not automatically be mapped to from the RIOT OS
Registry itself. To make them work, a custom mapping module needs to be implemented,
which maps each configuration parameter from the registry to the correct format of the
Configuration Manager.

33

5 Design of the new RIOT OS RCS

«component»

Runtime Configurations

«component»

Registry API

«config manager»

LWM2M

CoAP

Basic Configuration Managers

«config manager»

Config CLI (Riot Shell)

Serial

«config manager»

CoAP API

UDP

«config manager»

MQTT API

TCP

Applications / Drivers

«application»

My app

«driver»

BME280

«driver»

WS2812

Advanced Configuration Managers with
custom schemas

Figure 5.1: Runtime Configuration Architecture.

5.2 RIOT OS Registry

The RIOT OS Registry is a module for interacting with persistent key-value configura-
tions. It’s heavily inspired by the Mynewt Config implementation and LwM2M Object
Models [5, p. 68].

The RIOT OS Registry interacts with RIOT OS modules via CSs (see subsection 5.2.1),
and with non-volatile storage devices via Storage Facilities (see subsection 5.2.2). This
way the functionality of the RIOT OS Registry is independent of the functionality of a
module or storage device. It is possible to get or set the values of configuration parame-
ters. A CP is used to point to the correct configuration parameter. It is also possible to

34

5 Design of the new RIOT OS RCS

transactionally apply configurations or export their values to a buffer or print them. To
persist configuration values, it is possible to store them in non-volatile storage devices.

Any mechanism of security (access control, encryption of configurations) is not directly
in the scope of the Registry but in the Configuration Managers and the specific imple-
mentations of the CS and SF.

Figure 5.2 shows an example of two CSs (My app, LED Strip). The application “My
app” uses the custom “My app” CS to expose custom configuration parameters to the
RIOT OS Registry and the drivers WS2812, SK6812 and UCS1903 contain instances of
the “LED Strip” CS to expose common LED Strip configuration parameters. Also, there
are two Storage Facilities available: EEPROM and FAT.

«component»

Registry API

«schema»

My app

«schema»

LED Strip

Registry

/app /sys

«driver»

WS2812

«driver»

SK6812

«application»

My app

«storage facility»

EEPROM

«storage facility»

FAT

«driver»

EEPROM

«driver»

FAT

«driver»

UCS1903

instance instance- x, y, z

Figure 5.2: The RIOT OS Registry components.

See Usage Flow (subsection 5.2.4) for more information.

5.2.1 Configuration Schema (CS)

A CS represents a CG in the RIOT OS Registry. A RIOT OS module is required to add
an instance to a given CS in order to expose its configurations to the Registry API. Or
needs to implement its own custom CS.

35

5 Design of the new RIOT OS RCS

A CS is defined by an ID, some metadata (name, description) and a get and set handler
for interacting with the configuration parameters of the CG.

• set: Sets a value to a configuration parameter.

• get: Gets the current value of a configuration parameter.

The CS also contains the struct that specifies how each instance (SI) stores the actual
data.

Schema Instance (SI)

An instance of a CS, which contains the actual data values. It can be added to a CS
and contains a “commit_cb” handler, to notify the module containing the instance about
configuration changes that need to be applied.

• commit_cb: To be called once configuration parameters have been set, in order to
apply any further logic required to make them effective (e.g. handling dependen-
cies).

5.2.2 Storage Facility (SF)

An SF must implement the “storage interface” to allow the RIOT OS Registry to load,
search and store configuration parameters. From the point of view of the RIOT OS
Registry, all parameters are key/value pairs with certain types, it is the responsibility of
the SF to transform those into a proper format to store them. (E.g. lines separated by
a “\n” character in a file or encoded in CBOR etc.).

The interface of an SF is defined with a descriptor that has the following attributes:

• load: Executes a callback function for every configuration parameter stored in the
storage.

• store: Stores one configuration parameter in the storage.

36

5 Design of the new RIOT OS RCS

Any kind of storage encryption mechanism is not in the scope of this document, and
up to the implementation of load and store or intrinsic encryption functionalities in the
storage.

A minimal RIOT OS Registry setup requires at least one source SF from which config-
urations are loaded and exactly one SF destination to which configurations are stored.
Having multiple SF sources can be useful when it’s required to migrate the data between
Storage Facilities (e.g to migrate all configurations from SF A to B, register B as source
and destination and add A as a source).

5.2.3 Configuration Path (CP)

A complete CP is a unique identifier of a configuration parameter. A CP does not need
to be complete and can also only point to a specific Configuration Namespace (CN), CS,
SI or CG. The RIOT OS Registry needs this information, so that it knows where to look
for the requested configuration parameter values or metadata. Below is a regex example
showing how the CP is structured. All path elements have to be integers: “names-
pace_id/schema_id/instance_id/(group_id/)*parameter_id”. In reality the amount of
“group_ids” is limited to 8 and can be changed with a ‘define‘, so the regex is a bit
simplified.

Configuration Namespace (CN)

A CN splits CSs in multiple categories. Currently specified are the following: “SYS=0”
and “APP=1”. CSs that are part of “SYS” are RIOT OS internal CSs and are used to
abstract common configuration structures within RIOT OS such as “IEEE802154” etc.
The “APP” CN must not be used by RIOT OS itself, but only by the application. This
is to prevent application specific CS from clashing with RIOT OS’s internal CS. This
is specifically important for the case of when new CSs are added in a future RIOT OS
version.

Configuration Group (CG)

Within RIOT, each SI contains a list of configuration parameters and/or CGs. A CG
can contain multiple sub-CGs. This way a more complex CS can be split into multiple

37

5 Design of the new RIOT OS RCS

CGs, logically separating configuration parameters, instead of having them all in a flat
key-value list. Because the RIOT OS Registry allows a CP to point to specific CGs, this
gives the ability to do operations on a set of configuration parameters that share the same
CG, without needing to address each of those configuration parameters separately.

5.2.4 API and Usage Flows

API

Figure 5.3 shows the API of the RIOT OS Registry. On the left-hand side the basic API
to manage configuration parameters is shown. It allows to “set” and “get” configuration
parameters, transactionally “commit” them, “export” them to a buffer or terminal, “load”
them from storage and to “save” them to the storage. On the right-hand side the setup
API is shown, exposing functions to register CSs, SIs and SFs.

The functionality is of these functions is explained in the following paragraphs.

Basic API Configuration Schema Setup API

get set

commit export

load save

register_schema register_schema

_instance

Storage Facility Setup API

register_storage

_facility_src

register_storage

_facility_dst

Figure 5.3: RIOT OS Registry API.

Registry Initialization

As described in the flow in Figure 5.4, modules add their SIs to predefined CSs or declare
and register their own CS for CGs in the RIOT OS Registry. SFs are registered as sources
and/or destinations of configurations in the RIOT OS Registry.

38

5 Design of the new RIOT OS RCS

doForeach configuration
schema as cs

doForeach storage

facility as src

doGet one storage

facility as dst

registry_register_schema(cs)

registry_register_storage_src(src)

registry_register_storage_dst(dst)

doForeach schema

instance as si

registry_register_schema-

_instance(cs, si)

main()

RIOT Boot

Figure 5.4: Usage flow of the RIOT OS Registry.

Get Configurations

At any time, the application or a Configuration Manager can retrieve a configuration
value using the (registry_get_value) function.

Figure 5.5 shows the flow of getting the value of a configuration parameter. First the
function “registry_get_value” is called and takes the CP as its argument. If the registry
can find the requested CN, CS, SI and optionally all the CGs that are part of the CP
and if the last element of the CP is a configuration parameter, then it gets its value from
the SI and returns it. Otherwise the error “ENOTFOUND” is returned.

39

5 Design of the new RIOT OS RCS

first

path element

 is CN?

Return
ENOTFOUND

Yes

No

Yes

No No

Search for CS

in CN

Found CS?

Return
ENOTFOUND

No No No

Search for CN Search for SI

in CS

Yes

Found CN? Found SI?Yes Yes

next

path element

 is CS?

next

path element

 is SI?

Search for path

element in CS

Yes

Found
CG?

Yes

has next

path

element?

No

Yes

No

Found
parameter?No

Yes

Get value of
parameter from SI

Return value

of parameter

registry_get_value(
 path,
)

Figure 5.5: Behavioral flow of the "get" function.

Set Configurations

At any time, the application or a Configuration Manager can set a configuration value
using the (registry_set_value) function.

Figure 5.6 shows the flow of setting a configuration parameter to a new value. First the
function “registry_set_value” is called and takes the CP as its argument. If the registry
can find the requested CN, CS, SI and optionally all the CGs that are part of the CP and
if the last element of the CP is a configuration parameter, then it sets its value inside
the SI to the new value. Otherwise the error “ENOTFOUND” is returned.

40

5 Design of the new RIOT OS RCS

Note this function doesn’t interact with the SF, so configuration changes are not re-
flected in the non-volatile storage devices unless the function “registry_save” is called
(see subsubsection 5.2.4).

first

path element

 is CN?

Return
ENOTFOUND

Yes

No

Yes

No No

Search for CS

in CN

Found CS?

Return
ENOTFOUND

No No No

Search for CN Search for SI

in CS

Yes

Found CN? Found SI?Yes Yes

next

path element

 is CS?

next

path element

 is SI?

Search for path

element in CS

Yes

Found
CG?

Yes

has next

path

element?

No

Yes

No

Found
parameter?No

Set parameter value

of SI to new value

registry_set_value(

 path,
 value,

)

Figure 5.6: Behavioral flow of the "set" function.

Commit Configurations

Once the value(s) of one or multiple configuration parameter(s) are changed by the
“registry_set” function, they still need to be committed, so that the new values are
taken into effect. At any time, the application or a Configuration Manager can commit
a specific, or multiple configuration value(s) using the (registry_commit) function.

Figure 5.7 shows this process in more detail: First, the function “registry_commit” is
called and takes a CP as its argument. If the registry can find the requested CP, each
configuration parameter within this given CP will be passed on to the “commit_cb”
handler of the SI, taking its full CP as an argument. This callback is implemented by the

41

5 Design of the new RIOT OS RCS

modules/drivers that own the SI of the currently called configuration parameter. This
way they get notified, when the configuration parameter has been committed and can
apply the changes accordingly.

If the registry does not find parts of the given CP, it returns a “ENOTFOUND” error.

If the given CP does not point all the way to a concrete configuration parameter, but
only to a CN, a CS, a SI or a CG, then the registry will search for the configuration
parameters of all the children of the specified CP recursively and commit them.

No

path

contains

CN?

Foreach
CN

as rg

path

contains

CS?

No

Foreach
CS

in rg

as cs

path

contains

SI?

No

Foreach
SI

in cs
as si si->commit_cb(path)

Foreach config
parameter in cs or

cg as
param

get path of param

All configuration changes for
"path" take effect

Modules/drivers apply changes

Return
ENOTFOUND

Yes

CN exists

in registry?

Yes

No

Yes

CS exists

in registry?

Yes

No

Yes

SI exists

in registry?

Yes

No

registry_commit(path)

Yes

path

element is

CG?

has

next path

element?

Yes

No

path

elemet is
param?

Yes

No

No

Figure 5.7: Behavioral flow of the "commit" function.

Export Configurations

At any time, the application or a Configuration Manager can export a specific, or multiple
configuration value(s) using the (registry_export) function.

Figure 5.8 shows the flow of exporting values and metadata of configuration parameter
that are children of the given CP. First, the function “registry_export” is called and takes
a CP and a “export_func” callback as argument. If the registry can find the requested CP,

42

5 Design of the new RIOT OS RCS

each configuration parameter within this given CP will be passed on to the “export_-
func” callback, taking itself and its value as an argument, in this way exporting the
configuration parameters.

If the registry does not find parts of the given CP, it returns a “ENOTFOUND” error.

If the given CP does not point all the way to a concrete configuration parameter, but
only to a CN, a CS, a SI or a CG, then the registry will search for the configuration
parameters of all the children of the specified CP recursively and export them.

No

path

contains

CN?

Foreach
CN

as rg

path

contains

CS?

No

Foreach
CS

in rg

as cs

path

contains

SI?

No

Foreach
SI

in cs
as si

Foreach config
parameter in cs or

cg as
param

All configuration changes for
"path" take effect

Modules/drivers apply changes

Return
ENOTFOUND

Yes

CN exists

in registry?

Yes

No

Yes

CS exists

in registry?

Yes

No

Yes

SI exists

in registry?

Yes

No

Yes

path

element is

CG?

has

next path

element?

Yes

No

path

elemet is
param?

Yes

No

No

export_func(param, value)

get value of param from si

registry_export(
 path,
 &export_func,

)

Figure 5.8: Behavioral flow of the "export" function.

Load Configurations from Storage

At any time, the application or a Configuration Manager can load all configurations from
the registered SF sources (registry_load function). For example when a device restarts
after a shutdown.

Figure 5.9 shows this process in more detail: First, the “registry_load” function is called
with a CP as argument, specifying which configuration parameters must be loaded from

43

5 Design of the new RIOT OS RCS

storage. Then the “registry_load” function internally calls the SF’s “load” handler with
the storage instance, CP and the “load_func” callback, which is set to the “registry_-
set_value” function, as arguments. Then the SF calls the “registry_set_value” function
for each configuration parameter that it finds on the storage instance’s storage device.

All configurations are loaded from storageregistry_set_value(path, value)
Foreach stored
configuration as

{path, value}

storage_facility->load(
 storage_facility_instance,

 path,
 &load_func = registry_set_value,
)

registry_load(path)

Figure 5.9: Behavioral flow of the “load” function.

Save Configurations to Storage

At any time, the application or a Configuration Manager can store all configurations in
the SF destination (registry_save function). For example to prevent configuration loss
in case of a shutdown of the device.

Figure 5.10 shows this process in more detail: First, the “registry_save” function is called
with a CP as argument, specifying which configuration parameters must be saved to
storage. Then the “registry_save” function internally calls the “registry_export” function
with the CP and the SF’s “save” handler, as arguments. Using the SF’s “save” handler
as the export handler of the “registry_export” function, causes the “registry_export”
function to call it for each configuration parameter, that is within the specified CP and
passing its value on with it. Then the SF’s “save” handler each time saves the given
configuration parameter to the storage instance’s storage device.

All configurations are saved into the storage

registry_export(

 path,

 &storage_facility->save,

)

registry_save(path)

Figure 5.10: Behavioral flow of the “save” function.

Add Custom Configuration Schemas to the Registry

The registry itself already comes with many CSs that live within the “sys” CN. But
sometimes an application needs some custom runtime configurations that are too specific
for the registry to abstract, so it is possible to register a custom CS within the “app” CN.

44

5 Design of the new RIOT OS RCS

One must not register a custom CS within the “sys” CN, as this is a reserved space and
using it would almost certainly result in conflicts whenever RIOT OS gets updated.

Figure 5.11 visualizes the behavioral flow of adding a custom CS:

my_custom_schema.h

my_custom_schema.c

registry_register_schema(app,
my_custom_schema)

The new custom schema
has been registered within

the "app" namespace

Figure 5.11: Behavioral flow of the registration of custom CSs.

5.3 Integration of External Configuration Managers

5.3.1 Simple Configuration Managers

Simple Configuration Managers are ways to use the RIOT OS Registry without the need
to maintain adapters. Those managers would only be implemented once and mirror the
internal structure of the RIOT OS Registry. This can be quite powerful within RIOT OS-
only environments, but is not as powerful in terms of its “plug and play” capabilities.

Command-Line Interface (CLI)

The RIOT OS CLI can be extended with a “registry” command, which is followed by a
sub-command “set | get | commit | export”.
Each sub-command has a specific CLI interface:

• get: <path>

• set: <path> <value>

• commit: <path>

45

5 Design of the new RIOT OS RCS

• export: <path> [-r <recursion depth>]

• load: [path]

• save: [path]

The <path> argument is a string of integers separated by “/”. It maps directly to the
RIOT OS Registry internal path structure. The <value> argument is just the value as
a string. The “export” command also has the additional “-r <recursion depth>” flag. It
defaults to 0, which means that everything will be exported recursively. A value of 1
means, that only the parameter that exactly matches the specified path will be exported.
A value of 2 means the same as a value of 1 but also all of its children will be exported
etc.

CoAP API

The CoAP API based integration uses the RIOT OS internal registry structure and does
not come with its own CS structure. But CoAP only has a “get” and “set” function,
but no “export” or “commit” function. So the get and set command of the RIOT OS
Registry will just be mapped to the get and set of CoAP. For example: “GET /names-
pace_id/schema_id/. . . ” or “SET /namespace_id/schema_id/. . . -> new_value”. The
“export” command can be realized through the “GET /.well-known/core” endpoint. The
“commit” command is less trivial as there is no equivalent construct within CoAP itself.
But here are some ideas:

• Make a get request which’s path has a “commit” prefix such as: “GET /commit/-
namespace_id/schema_id/. . . ”

• Have a dedicated “commit” endpoint, which can be set to a specific path, which
current state will be committed on execution. For example: “SET /commit ->
/namespace_id/schema_id/. . . ”.

• Don’t implement the “commit concept” at all, but rather commit every “set” opera-
tion and allow sending values to whole CGs/CSs as their endpoint, containing values
for the complete CG/CS or parts of it. For example in the CBOR or JavaScript
Object Notation [3] (JSON) format. This way it still is possible to change multiple
values at once.

46

5 Design of the new RIOT OS RCS

R
IO

T
D

ev
ic

e

sys / rgb_led / 0 / red -> 27

RIOT Registry

results

All

results

>= 0

No

Yes

Lw
M

2M
 C

lie
nt

receive

send 204
COAP 204

send 4??COAP 4??

registry_set_uint8([0, 4, 0, 0], 27)

SYS / rgb_led / Instance 0 / red

Figure 5.12: CoAP integration.

MQTT API

The MQTT API based integration uses the RIOT OS internal registry structure and
does not come with its own schema structure, but is limited to only having events with
or without data. As a consequence there are no commands such as set, get, commit or
export. Values will be set by sending a “publish” event containing the new value and
subscribing to the same event will notify the subscriber whenever a new value is available.
This way the “set” and “get” behavior of the RIOT OS Registry can be realized. The
export command is not necessary because the MQTT broker gets an initial publish
for each parameter when the device boots. So it knows about all existing topics and
can expose them. Because one MQTT broker can have multiple RIOT OS nodes, it is
necessary to prefix the topic of each message with a device_id. For example: “device_-
id/namespace_id/schema_id/. . . ”. Less trivial is how the “commit” command can be
exposed to MQTT. But here are some ideas:

• Extend the topic of the path that needs to be committed with a “commit” prefix.
For example: “commit/device_id/namespace_id/schema_id/. . . ”.

• Have a dedicated “commit” topic, which can be set to a specific path, which then will
be committed. For example: “SET /commit -> /namespace_id/schema_id/. . . ”.

• Don’t implement the “commit concept” at all, but rather commit every “set” op-
eration and allow sending values to whole CSs/CSs as their endpoint, containing
values for the complete CS/CS or parts of it. For example in the CBOR or JSON
format. This way it still is possible to change multiple values at once.

47

5 Design of the new RIOT OS RCS

R
IO

T
D

ev
ic

e
7

device_7 / sys / rgb_led / 0 / red -> 27

RIOT Registry

registry_set_uint8([0, 4, 0, 0], 27)

SYS / rgb_led / Instance 0 / red M
Q

TT
 C

lie
nt

receive

device_7 / sys / rgb_led / 0 / red -> 27

MQTT Broker

Figure 5.13: MQTT integration.

5.3.2 Advanced Configuration Managers

While having the ability to use the Registry inside RIOT OS and using a (UART)
CLI, the registry itself is designed so that it can easily integrate with common external
Configuration Managers. This makes it possible to modify parameters for example via the
Ethernet, LoRa, Bluetooth, 802.15.4 etc. The basic idea is that the RIOT OS Registry
with its predefined CSs defines a RIOT OS internal specification, as to which kind of

48

5 Design of the new RIOT OS RCS

data is to be found where. Then each external Configuration Manager has to implement
its adapter module, which maps/converts its data structures to the RIOT OS Registry.

LwM2M

LwM2M is a relatively new protocol that is similar to the RIOT OS Registry in that
it specifies official (and unofficial) so-called “object models” that define which informa-
tion can be found where. It internally uses CoAP and has a concept of instances as
well. A typical LwM2M configuration parameter identifier/path has the following struc-
ture: “object_id/instance_id/parameter_id”. The “object_id” is similar to RIOT OS’s
“schema_id”, the “instance_id” is the same as in RIOT OS and the “parameter_id” is
also the same as in RIOT OS except LwM2M does not know anything about nesting, so
there are no paths longer than ‘3‘ [5]. To integrate LwM2M into the RIOT OS Registry
it is necessary to write an adapter that maps the LwM2M object models to the RIOT
OS Registry CSs. An example of how this adapter would handle a “set” operation can
be seen below:

R
IO

T
D

ev
ic

e

LwM2M Server

LwM2M / COAP

set 3420 / 0 / 0 to #ff00ff

No
Found

object

3420

Yes

RIOT Registry

registry_set_uint8([0, 1, 0, 0], 255)

registry_set_uint8([0, 1, 0, 1], 0)
registry_set_uint8([0, 1, 0, 2], 255)

registry_commit([0, 1, 0])
results

All

results

>= 0

No
Yes

Lw
M

2M
 C

lie
nt

O
bj

ec
t 3

42
0

receive

send 404COAP 404

send 204
COAP 204

convert hex color to rgb uint8 values:

#ff00ff => 255, 0, 255

Convert LwM2M data to match the RIOT Registry

SYS / rgb_led / Instance 0 / { red | green | blue}

send 4??
COAP 4??

Figure 5.14: LwM2M integration.

49

6 Implementation of the RIOT OS
Registry

This chapter shows the implementation details of chapter 5. The full source code is on
the enclosed CD and on GitHub 1.

6.1 Configuration Schema (CS)

This section shows the implementation details of the in subsection 5.2.1 specified CSs.
The “sys”-CN CSs are implemented in an additional module called “registry_schemas”.
By default every CS, that is implemented inside that module is disabled, because those
implementations are depending on CFLAGS to be set. The structure of those CFLAGS is
the following: “DCONFIG_REGISTRY_ENABLE_SCHEMA_{schema_name}”, where
“schema_name}” must be replaced with the name of an existing CS such as “RGB_LED”
or “FULL_EXAMPLE”.

Figure 6.1 shows the structure of a CS. It consists of an id, which is used in the CP, a
name and description metadata field so that Configuration Managers can provide a less
confusing interface, a list of SIs and an items field, which contains an array of “Schema
Items”. The list of SIs needs to be stored in the CS because the RIOT OS Registry is
supposed to do avoid dynamic heap allocation (see section 3.6). This list is a linked list,
so every newly registered SI will be added at the end of the list. The Schema Items of
the items field represent either a configuration parameter or a CG. Each Schema Item
has a Registry ID as well as a name and a description metadata field. If a Schema Item
is a CG, then it contains an array of Schema items as its value union field. Otherwise it
contains a configuration parameter type of the concrete type “Registry Type”.

1https://github.com/LasseRosenow/riot-runtime-config

50

https://github.com/LasseRosenow/riot-runtime-config

6 Implementation of the RIOT OS Registry

Besides its fields the CS also contains a callback function inside its “mapping” field.
This function translates a configuration parameter ID to a pointer of the configuration
parameter’s value inside the SI. It also returns the size of this configuration parameter
value. This function is necessary because how a SI stores its data is decided by each
CS’s implementation. So only the CS knows how to translate between a configuration
parameter ID and the actual data location inside the SI.

string

Registry ID

string

string

Configuration Schema

callback
 param_id instance Schema
InstanceRegistry ID val_len size *

Schema Item

union

Array<Schema Item>

items

id

name

description

items

mapping

Registry Type

Registry ID

string

id

name

description

value

List<Schema Instance>instances

val void **

Parameter

type

Group

Array<Schema
Item>

Figure 6.1: RIOT OS Registry CS implementation data structure.

Figure 6.2 shows the data structure of the “Registry Type” type. A Registry Type is an
enum that can be either of type “none”, if the type is not known. This is usually used

51

6 Implementation of the RIOT OS Registry

to show, that something went wrong or as a placeholder for as long as a type is not yet
known. It can also have the type “opaque”. This is used to allow the RIOT OS Registry
to support every other type of data that does not fit into one of the other types. It
internally has the void pointer type and a specified size. Additionally a string of a fixed
size, a boolean, a uint8, a uint16, a uint32, a uint64, a int8, a int16, a int32, a int64, a
float32 and a float64 are supported as a Registry Type.

string bool

float32 float64

uint8

int8

uint16 uint32 uint64

int16 int32 int64

none opaque

<Enum>

Registry Type

Figure 6.2: RIOT OS Registry configuration parameter type implementation enum.

Figure 6.3 shows the data structure of a SI. The “name” field allows it SI to have a human
readable soft identifier. The “data” field contains its configuration parameter values in
whatever format the CS implementation decides on. The “commit_cb” callback function
is called whenever a configuration parameter’s new value of this SI gets “committed”
(see paragraph 5.2.4). This way the module or driver that holds this SI can apply the
configuration parameter changes inside the “commit_cb” function.

string

void *

Schema Instance

name

data

callback
 path Registry Pathcommit_cb

Figure 6.3: RIOT OS Registry SI implementation data structure.

Listing 6.1 shows the header file of the “registry_schemas” module with an example
RGB LED CS. In line 4 the “registry_schema_init” function is defined, which registers

52

6 Implementation of the RIOT OS Registry

all enabled “sys”-CN CSs at the RIOT OS Registry. From line 7 - 10 is an enum that
defines which CS gets which ID. This enum prevents that two CSs use the same ID. In
line 13 the CS variable is created which will be implemented in the corresponding C file.
Line 16 - 21 is the struct definition of a SI. For a RGB LED CS a red, green and blue
uint8 value is enough. In line 24 - 28 the configuration parameter IDs are set using an
enum again. These will be used in the C file, when implementing the CS.

1 #include "registry.h"

2
3 /* initialize schemas */

4 void registry_schemas_init(void);

5
6 /* schema IDs */

7 typedef enum {

8 REGISTRY_SCHEMA_RGB_LED = 1,

9 /* SOME_OTHER_SCHEMA = 2, ... */

10 } registry_schema_id_t;

11
12 /* RGB LED schema */

13 extern registry_schema_t registry_schema_rgb_led;

14
15 /* RGB LED instance */

16 typedef struct {

17 clist_node_t node;

18 uint8_t red;

19 uint8_t green;

20 uint8_t blue;

21 } registry_schema_rgb_led_t;

22
23 /* RGB LED configuration parameter IDs */

24 typedef enum {

25 REGISTRY_SCHEMA_RGB_LED_RED,

26 REGISTRY_SCHEMA_RGB_LED_GREEN,

27 REGISTRY_SCHEMA_RGB_LED_BLUE,

28 } registry_schema_rgb_led_indices_t;

Listing 6.1: Example CS implementation: registry_schemas.h

Listing 6.2 shows the source code of the “registry_schema_init.c” file. In this C file, the
“registry_schemas_init” function is implemented. In line 6 it is checked if the “CON-

53

6 Implementation of the RIOT OS Registry

FIG_REGISTRY_ENABLE_SCHEMA_RGB_LED” flag to enable the RGB LED CS
is set. If the flag is set, then in line 7 - 10 the RGB LED CS gets registered in the RIOT
OS Registry. As the RGB LED schema is supposed to be a “sys”-CN CS, the CN is
set to 0 using the “REGISTRY_ROOT_GROUP_SYS” enum value. In line 9 the in
Listing 6.1 defined CS variable is passed as an argument.

1 #include "registry.h"

2 #include "registry_schemas.h"

3
4 void registry_schemas_init(void)

5 {

6 if (IS_ACTIVE(CONFIG_REGISTRY_ENABLE_SCHEMA_RGB_LED)) {

7 registry_register_schema(

8 REGISTRY_ROOT_GROUP_SYS,

9 ®istry_schema_rgb_led,

10);

11 }

12 }

Listing 6.2: Example CS implementation: registry_schemas_init.c

Listing 6.3 shows the source code of the “registry_schema_rgb_led.c” file. It contains an
example RGB LED CS implementation. To create a CS, the “REGISTRY_SCHEMA”
macro can be used as seen in line 3. This macro takes the in Listing 6.1 defined CS
variable, the CS ID, 2 strings and a “mapping” function as its arguments. Additionally
as can be seen from line 9 - 19, it can take infinitely more configuration parameter
macros (“REGISTRY_PARAMETER_*”) or CG macros (“REGISTRY_GROUP”) as
its arguments. The latter not being present in this example. With these values, the
macros generate a struct of the structure explained in Figure 6.1. In line 6 as an example,
the first string will be the value of the name field and the second string will be the value
of the description filed of the CS struct. Line 23 to line 47 show the “mapping” function
implementation. In line 29 this function casts the data field of the SI to the correct
struct of this CS’s implementation. From line 31 to 46, depending on which configuration
parameter ID is provided, the output pointer of a pointer (“val”) gets set to the pointer
of the SI’s value. An example of this can be seen in line 33. The second output pointer’s
value (“val_len”) gets set to the size of the configuration parameter’s value. An example
of this can be seen in line 34.

1 #include "registry_schemas.h"

54

6 Implementation of the RIOT OS Registry

2
3 REGISTRY_SCHEMA(

4 registry_schema_rgb_led,

5 REGISTRY_SCHEMA_RGB_LED,

6 "rgb", "Representation of an rgb color.",

7 mapping,

8
9 REGISTRY_PARAMETER_UINT8(

10 REGISTRY_SCHEMA_RGB_LED_RED,

11 "red", "Intensity of the red color of the rgb lamp.")

12
13 REGISTRY_PARAMETER_UINT8(

14 REGISTRY_SCHEMA_RGB_LED_GREEN,

15 "green", "Intensity of the green color of the rgb lamp.")

16
17 REGISTRY_PARAMETER_UINT8(

18 REGISTRY_SCHEMA_RGB_LED_BLUE,

19 "blue", "Intensity of the blue color of the rgb lamp.")

20
21);

22
23 static void mapping(

24 const registry_id_t param_id,

25 const registry_instance_t *instance,

26 void **val,

27 size_t *val_len,

28) {

29 registry_schema_rgb_led_t *_instance =

(registry_schema_rgb_led_t *)instance->data;

30
31 switch (param_id) {

32 case REGISTRY_SCHEMA_RGB_LED_RED:

33 *val = &_instance->red;

34 *val_len = sizeof(_instance->red);

35 break;

36
37 case REGISTRY_SCHEMA_RGB_LED_GREEN:

38 *val = &_instance->green;

39 *val_len = sizeof(_instance->green);

40 break;

55

6 Implementation of the RIOT OS Registry

41
42 case REGISTRY_SCHEMA_RGB_LED_BLUE:

43 *val = &_instance->blue;

44 *val_len = sizeof(_instance->blue);

45 break;

46 }

47 }

Listing 6.3: Example CS implementation: registry_schema_rgb_led.c

Listing 6.4 shows an example application that uses the RGB LED CS. From line 5 -
25 the SI callback function is implemented. In this implementation this function only
prints the CN, CS and SI of the committed CP, if the CP parameter “path” provides
these values. From line 28 - 32 a variable that initializes an RGB LED SI struct, giving
default values to the red, green and blue fields. From line 35 - 39 a variable is defined,
initializing a RIOT OS Registry SI struct. This struct takes the callback function of line
5 and the RGB LED SI struct as its value. In line 44 the registry gets initialized by
calling the “registry_init” function. Then in line 47 the CSs get initialized by calling the
“registry_schemas_init” function. And finally from line 50 - 54 the RIOT OS Registry
SI struct that got initialized in line 35, is registered in the RIOT OS Registry using the
“registry_register_schema_instance” function, providing the “sys” CN and the id of the
CS as additional arguments.

1 #include "registry.h"

2 #include "registry_schemas.h"

3
4 /* schema instance commit callback */

5 int rgb_led_instance_0_commit_cb(

6 const registry_path_t path,

7 const void *context,

8) {

9 (void)context;

10
11 /* print CN, CS ID and SI ID if available */

12 printf("RGB instance commit_cb was executed: %d",

*path.namespace_id);

13
14 if (path.schema_id) {

15 printf("/%d", *path.schema_id);

16 }

56

6 Implementation of the RIOT OS Registry

17
18 if (path.instance_id) {

19 printf("/%d", *path.instance_id);

20 }

21
22 printf("\n");

23
24 return 0;

25 }

26
27 /* schema instance data struct */

28 registry_schema_rgb_led_t rgb_led_instance_0_data = {

29 .red = 0,

30 .green = 255,

31 .blue = 70,

32 };

33
34 /* schema instance */

35 registry_instance_t rgb_led_instance_0 = {

36 .name = "rgb-0",

37 .data = &rgb_led_instance_0_data,

38 .commit_cb = &rgb_led_instance_0_commit_cb,

39 };

40
41 int main(void)

42 {

43 /* init registry */

44 registry_init();

45
46 /* init schemas */

47 registry_schemas_init();

48
49 /* register schema instance */

50 registry_register_schema_instance(

51 REGISTRY_NAMESPACE_SYS,

52 registry_schema_rgb_led.id,

53 &rgb_led_instance_0,

54);

55
56 return 0;

57

6 Implementation of the RIOT OS Registry

57 }

Listing 6.4: Example CS implementation: main.c

6.2 Storage Facility (SF)

This section shows the implementation details of the in subsection 5.2.2 specified SFs.
The RIOT OS Registry comes with a few officially supported SFs implemented in the “reg-
istry_storage_facilities” module. By default every SF, that is implemented inside that
module is disabled, because those implementations are depending on CFLAGS to be set.
The structure of those CLFAGS is the following: “DCONFIG_REGISTRY_ENABLE_-
STORAGE_FACILITY_{storage_facility_name}””, where “{storage_facility_name}”
must be replaced with the name of an existing SF such as “VFS”.

Figure 6.4 shows the structure of a SF. It consists of four callback functions. A “load”
callback function that both take a “Storage Facility Instance”, a CP and another callback
as its arguments. Inside the load function the SF searches for configuration parameter
values of the given CP. Therefor it might need for example a filesystem mount. This
is specified in the data field of the “Storage Facility Instance” as a void pointer. The
callback argument of the load callback takes a CP and a “Registry Value” as an argument.
This callback gets executed on every configuration parameter that is found and matches
the provided CP. The RIOT OS Registry sets this callback to the “registry_value_-
set” function. Besides the “load” callback function, the SF struct also has a “save_-
start” and a “safe_end” callback function. Both take the “Storage Facility Instance” as
an argument. The “save_start” callback function gets called before the “save” callback
function gets executed and is used to initialize the storage device, for example to mount a
filesystem before multiple save operations are executed. This way unnecessary overhead
of continuously mounting and unmounting filesystems can be avoided. The “save_end”
callback function gets called after the “save” function finished its execution and is used to
teardown the storage device, for example unmount a filesystem, after all “save” operations
are completed. The “save” callback function takes a “Storage Facility Instance”, a CP
and a “Registry Value” as its arguments. It saves the provided configuration parameter
value (Registry Value) on the storage, in a by the SF defined structure, so that the “load”
function can find it by its CP.

58

6 Implementation of the RIOT OS Registry

Storage Facility

load

save_start

save_end

save callback

callback

path value Registry Value

callback

callback

Registry Path

instance path cb function(Registry
Path, Registry Value)Registry Path

Storage Facility Instance

Storage Facility Instance

Storage Facility Instance

Storage Facility Instanceinstance

instance

instance

Figure 6.4: RIOT OS Registry SF implementation data structure.

Figure 6.5 shows the structure of a SF Instance. It holds a pointer to a SF implementation
and provides data such as a filesystem mount as a void pointer.

Storage Facility

Storage Facility Instance

itf

void * (fs_mount etc.)data

Figure 6.5: RIOT OS Registry SF Instance implementation data structure.

Figure 6.6 shows the structure of a configuration parameter called “Registry Value”. It
has a “type” field which specifies the primitive type of the configuration parameter’s
value. Its value is then stored in the “buf” field, which has a void pointer as its type. To
pass the buffer around the program safely, it is also important to know its size, so there
is a third field with the name “buf_len”, which holds the size of the value, stored in the
“buf” field.

59

6 Implementation of the RIOT OS Registry

Registry Type

void *

size

Registry Value

type

buf

buf_len

Figure 6.6: RIOT OS Registry configuration parameter value implementation structure.

Listing 6.5 shows the header file of the “registry_storage_facilities” module. It contains
an example “VFS” SF variable definition called “registry_storage_facility_vfs”.

1 #include "registry.h"

2
3 /* vfs storage facility instance */

4 extern registry_storage_facility_t registry_storage_facility_vfs;

Listing 6.5: Example SF implementation: registry_storage_facilities.h

Listing 6.6 shows the implementation of the VFS SF. Because the full VFS SF implemen-
tation is around 400 lines of code, the provided SF source code in this thesis is reduced.
The full source code is on the enclosed CD and on GitHub 2. In line 23 - 26 the SF
variable is initialized and the load and save callback functions are taken as arguments.
The “save” function of the VFS SF creates a folder for every CN if it does not exist yet.
It also creates a folder for every CS ID inside its CN folder. The same goes for the SI
ID, and the CG IDs. For the configuration parameters it does not create a folder, but
create a file that also uses its ID as its filename. Inside the file the configuration param-
eters value is written as binary. The “load” function of the VFS SF scans the storage
for folders and files that match the provided CP. If those files match the CP, it asks the
RIOT OS Registry for the metadata of the configuration parameter by calling the “reg-
istry_get_value” function. This way it can find out the correct size of the configuration
parameters value and reads it from the storage. This value is then returned using the
provided callback function.

2https://github.com/LasseRosenow/riot-runtime-config/blob/main/external_
modules/registry_storage_facilities/storage_facility_vfs.c

60

https://github.com/LasseRosenow/riot-runtime-config/blob/main/external_modules/registry_storage_facilities/storage_facility_vfs.c
https://github.com/LasseRosenow/riot-runtime-config/blob/main/external_modules/registry_storage_facilities/storage_facility_vfs.c

6 Implementation of the RIOT OS Registry

1 #include "registry_storage_facilities.h"

2
3 /* load data from storage */

4 static int load(

5 const registry_storage_facility_instance_t *instance,

6 const registry_path_t path,

7 const load_cb_t cb,

8 const void *cb_arg,

9) {

10 /* Loop through storage and call "load_cb_t" on each

configuration parameter that is compatible to the specified

path. */

11 }

12
13 /* save data to storage */

14 static int save(

15 const registry_storage_facility_instance_t *instance,

16 const registry_path_t path,

17 const registry_value_t value

18) {

19 /* Open the file under the specified path and write the new

value inside. */

20 }

21
22 /* storage facility */

23 registry_storage_facility_t registry_storage_facility_vfs = {

24 .load = load,

25 .save = save,

26 };

Listing 6.6: Example SF implementation: registry_storage_facility_vfs.c

Listing 6.7 shows the source code of an example application using the VFS SF. From
line 6 - 14 the filesystem mount is being configured. Then in line 17 - 26 the VFS SF
Instance is created, which takes the filesystem mount and the SF (“registry_storage_-
facility_vfs”) as its field’s values. Then from line 28 - 38 the main function of the
program is implemented. First in line 31 the RIOT OS Registry is initialized by calling
the “registry_init” function. Then in line 34 the source SF is registered in the RIOT OS
Registry by calling the “registry_register_storage_facility_src” function. And finally in

61

6 Implementation of the RIOT OS Registry

line 35 the destination SF is registered in the RIOT OS Registry by calling the “registry_-
register_storage_facility_dst” function.

1 #include "registry.h"

2 #include "registry_storage_facilities.h"

3 #include "fs/littlefs2_fs.h"

4
5 /* initialize vfs mount */

6 static littlefs2_desc_t fs_desc = {

7 .lock = MUTEX_INIT,

8 };

9
10 static vfs_mount_t vfs_mount = {

11 .fs = &FS_DRIVER,

12 .mount_point = "/sda",

13 .private_data = &fs_desc,

14 };

15
16 /* initialize a storage facility source instance */

17 registry_storage_facility_instance_t vfs_instance_src = {

18 .itf = ®istry_storage_facility_vfs,

19 .data = &vfs_mount,

20 };

21
22 /* initialize a storage facility destination instance */

23 registry_storage_facility_instance_t vfs_instance = {

24 .itf = ®istry_storage_facility_vfs,

25 .data = &vfs_mount,

26 };

27
28 int main(void)

29 {

30 /* init registry */

31 registry_init();

32
33 /* register storage_facility source and destination instances */

34 registry_register_storage_facility_src(&vfs_instance_src);

35 registry_register_storage_facility_dst(&vfs_instance_dst);

36
37 return 0;

38 }

62

6 Implementation of the RIOT OS Registry

Listing 6.7: Example SF implementation: main.c

6.3 Configuration Path (CP)

This section shows the implementation details of the in subsection 5.2.3 specified CP.

Figure 6.7 shows the structure of the CP on the left-hand side. It contains a CN field,
that is implemented as an enum containing a “sys”=0 and a “app”=1 value as possible
CNs. The CP also has a CS ID field, which is of the type “Registry ID”. The Registry
ID type internally is a uint32 type. The CP also has a field that holds the SI ID, which
is also of the Registry ID type. And at last the CP has a “path” field, which is an array
of “Registry IDs”. The “path” field contains the CG and configuration parameter IDs.

Namespace ID

Registry ID

Registry ID

Registry Path

Array<Registry ID>

namespace_id

schema_id

instance_id

path

<Enum>

NameSpace ID

SYS = 0

APP = 1

Registry ID

uint32

Figure 6.7: RIOT OS Registry CP implementation data structure.

6.4 API

This section shows the implementation details of the in subsection 5.2.4 specified API.

63

6 Implementation of the RIOT OS Registry

6.4.1 Basic API

Get

Figure 6.8 shows the implementation of how to get a configuration parameter’s value as
specified in section 5.2. It shows a function called “get” that takes a CP and a “Registry
Value” pointer as an argument. The “Registry Value” pointer is used to return the
configuration parameter’s value.

Name

int path Registry Pathget

ParametersReturns

Get a value of a configuration
parameter

Description

value Registry Value *

Figure 6.8: RIOT OS Registry API: get.

Listing 6.8 shows the source code of this function.

1 int registry_get_value(

2 const registry_path_t path,

3 registry_value_t *value

4);

Listing 6.8: Get configuration parameter values: C-function.

Set

Figure 6.9 shows the implementation of how to set a configuration parameter’s value to
a new value as specified in section 5.2. It shows a function called “set” that takes a CP
and a “Registry Value” as an argument.

Name ParametersReturns Description

intset path Registry Path value Registry Value Set a value of a configuration

parameter

Figure 6.9: RIOT OS Registry API: set.

Listing 6.9 shows the source code of this function.

64

6 Implementation of the RIOT OS Registry

1 int registry_set_value(

2 const registry_path_t path,

3 const registry_value_t val

4);

Listing 6.9: Set new configuration parameter values: C-function.

Commit

Figure 6.10 shows the implementation of how to commit configuration parameters as
specified in section 5.2. It shows a function called “commit” that takes a CP as an
argument.

Name ParametersReturns

Apply changes from "set/get"intcommit

Description

path Registry Path

Figure 6.10: RIOT OS Registry API: commit.

Listing 6.10 shows the source code of this function.

1 int registry_commit(const registry_path_t path);

Listing 6.10: Commit configuration parameters: C-function.

Export

Figure 6.11 shows the implementation of how to export configuration parameters as
specified in section 5.2. It shows a function called “export” that takes a CP, a callback
function, a integer called “recursion_depth” and a void pointer as for context data as
an argument. The “recursion_depth” parameter of this function specifies how deep the
export function is allowed to recursively search for configuration parameters and export
them. If the recursion_depth is set to 0, then all configuration parameters, that are
within the specified CP are exported. If the recursion_depth is set to 1, then only a
configuration parameter gets exported, if it exactly matches the given CP. If the re-
cursion_depth is set to a higher number than 1, the export function will export all

65

6 Implementation of the RIOT OS Registry

configuration parameters, that are within the given CP and are not nested more steps
deeper than the given CP goes plus the specified number. The callback function takes a
CP, a CS, a SI, a “Schema Item” and a “Registry Value” and a void pointer for context
data as its arguments.

Name

intexport

path Registry Path callback Export Callback

ParametersReturns

Export available parameters by path

Description

intExport
Callback

path Registry Path schema Schema
Handle export of a specific parameter

instance Schema
Instance

value Registry Valuemeta Schema Item

recursion_depth int context void *

context void *

Figure 6.11: RIOT OS Registry API: export.

Listing 6.11 shows the source code of this function.

1 int registry_export(

2 int (*export_func)(

3 const registry_path_t path,

4 const registry_schema_t *schema,

5 const registry_instance_t *instance,

6 const registry_schema_item_t *meta,

7 const registry_value_t *value,

8 const void *context

9),

10 const registry_path_t path,

11 const int recursion_depth,

12 const void *context,

13);

Listing 6.11: Export configuration parameters: C-function.

Load

Figure 6.12 shows the implementation of how to load configuration parameter values
from a non-volatile storage device as specified in section 5.2. It shows a function called
“load” that takes a CP as an argument.

66

6 Implementation of the RIOT OS Registry

Name ParametersReturns

Load parameter values from storageintload

Description

path Registry Path

Figure 6.12: RIOT OS Registry API: load.

Listing 6.12 shows the source code of this function.

1 int registry_load(const registry_path_t path);

Listing 6.12: Load configuration parameter values: C-function.

Save

Figure 6.13 shows the implementation of how to save configuration parameter values to
a non-volatile storage device as specified in section 5.2. It shows a function called “save”
that takes a CP as an argument.

Name ParametersReturns

Save parameter values to storageintsave

Description

path Registry Path

Figure 6.13: RIOT OS Registry API: save.

Listing 6.13 shows the source code of this function.

1 int registry_save(const registry_path_t path);

Listing 6.13: Save configuration parameter values: C-function.

6.4.2 Schema Setup API

Figure 6.14 shows the implementation of how to register a CS or a IoT in the RIOT OS
Registry as specified in section 5.2. It shows a function called “register_schema” that
takes a CN as an argument. This function then adds the CS to a internal linked list.
Figure 6.14 also shows a function called “register_schema_instance”, which takes a CN,

67

6 Implementation of the RIOT OS Registry

a CS ID and a pointer to a SI as its argument. Internally the RIOT OS Registry then
adds the SI to the linked list of SIs, stored in the CS that matches the given CS ID.

Add instance to configuration schema

Register configuration schema

DescriptionName

namespace_id Namespace ID

Parameters

schema Configuration Schema *
int

Returns

register_schema

namespace_id Namespace ID

instance Schema Instance *
intregister_schema_instance

schema_id Registry ID

Figure 6.14: RIOT OS Registry API: setup CS.

Listing 6.14 shows the source code of these functions.

1 void registry_schemas_init(void);

2
3 int registry_register_schema(

4 const registry_namespace_id_t namespace_id,

5 const registry_schema_t *schema

6);

7
8 int registry_register_schema_instance(

9 const registry_namespace_id_t namespace_id,

10 const registry_id_t schema_id,

11 const registry_instance_t *instance

12);

Listing 6.14: Schema Setup API.

6.4.3 Storage Facility Setup API

Figure 6.15 shows the implementation of how to register a SF in the RIOT OS Registry
as specified in section 5.2. It shows a function called “register_storage_facility_src”
that takes a pointer to a SF Instance as an argument. This function then adds the SF
Instance to a internal linked list of SF sources. Figure 6.15 also shows a function called
“register_storage_facility_dst” that takes a pointer to a SF Instance as an argument.
This function then sets the SF Instance as the internal SF. This SF is not added to a
internal linked list, because there can only be one SF to write to.

68

6 Implementation of the RIOT OS Registry

void

void

src Storage Facility Instance *

register_storage_facility_dst

register_storage_facility_src

dst Storage Facility Instance *

Name ParametersReturns

Register storage_facility to write data to

Register storage_facility to read data
from

Description

Figure 6.15: RIOT OS Registry API: Setup SF.

Listing 6.15 shows the source code of these functions.

1 void registry_register_storage_facility_src(

2 const registry_storage_facility_instance_t *src

3);

4
5 void registry_register_storage_facility_dst(

6 const registry_storage_facility_instance_t *dst

7);

Listing 6.15: Storage Facility Setup API.

69

7 Testing of the Implementation’s
Correctness

The “registry_tests” module provides unit tests that can be run by including the “reg-
istry_tests.h” header file and calling the “registry_tests_api_run” function.

7.1 Test Setup

To be able to test if all by the RIOT OS Registry supported data types are supported,
the “registry_tests” module uses the “registry_schema_full_example” of the “registry_-
schemas” module. This CS contains fields for every supported data type of the RIOT OS
Registry (see section 3.5 and Figure 6.2). Additionally the module creates and registers
a custom CS called “registry_schema_groups_test”, which consists of 4 CGs, that are
children of each other, creating a maximum CP of up to 5 segments excluding the CN,
CS and SI. This is necessary to test if the CGs are implemented correctly.

7.2 Testing the “registry_get” and “registry_set”
Functions

To test the correctness of the “registry_get” and “registry_set” functions of the RIOT OS
Registry, first we call the “registry_set” function for all fields of the “registry_schema_-
full_example” CS and also for all fields of the “registry_schema_groups_test” CS to test
every data type that is supported by the RIOT OS Registry and also if CGs work. Then
we call the “registry_get” function for all previously set parameters and compare the
returning values to the original values. If these values match, the test is successful. This
testing sequence is executed for the minimum and maximum value for each configuration
parameter.

70

7 Testing of the Implementation’s Correctness

7.3 Testing the “registry_commit” Function

To test the correctness of the “registry_commit” function of the RIOT OS Registry, first
we create a global bool and initialize it to “false”. Then we call the “registry_commit”
function providing a CP as an argument that points to a configuration parameter of a
SI, which in its callback function checks, if the provided values are matching to what is
expected. It then changes the value of the global bool to “true” if the values are correct
and to “false” if they are not. If the value is set to “true”, the test is successful.

Ideally this test is not only implemented for calling a concrete configuration parameter
of a SI, but also for calling incomplete CPs, such as a CP that only points to the CS
or one that only points to the SI. In both cases the configuration parameter must be
committed because its parent got committed. These tests are not yet implemented.

7.4 Testing the “registry_export” Function

To test the correctness of the “registry_export” function of the RIOT OS Registry, first
we create a global bool and initialize it to “false”. Then we call the “registry_export”
function providing a CP that points to a configuration parameter and a custom callback
function as its arguments. When the callback function gets called, it checks if the provided
values are matching to what is expected. It then changes the value of the global bool to
“true” if the values are correct and to “false” if they are not. If the value is set to “true”,
the test is successful.

Ideally this test is not only implemented for calling a concrete configuration parameter of
a SI, but also for calling incomplete CPs, such as a CP that only points to the CS or one
that only points to the SI. In these cases it depends on the “recursion” argument, how
deep the “registry_export” function searches inside the CS for configuration parameters
to export. These tests are not yet implemented.

71

7 Testing of the Implementation’s Correctness

7.5 Testing the “registry_save” and “registry_load”
Function

To test the “registry_save” and “registry_load” functions, every test that is done in 7.2
gets executed again, but this time after each sequence we call the “registry_save” function
to write the values to the storage. Then all previously set configuration parameters get
changed to a different value using the “registry_set” function. And finally we call the
“registry_load” function to read the values written to storage and loading them into the
RIOT OS Registry again. If these values now match with the values that were initially
set by the “registry_set” function, then the test is successful.

72

8 Evaluation of the implementation’s
overhead

8.1 RAM

8.1.1 Heap

The RIOT OS Registry does not do any dynamic heap allocations, so evaluating the
heap overhead is not necessary.

8.1.2 Stack

In this section the stack consumption of the RIOT OS Registry API is measured and dis-
cussed. More specifically the functions “registry_get_value”, registry_set_value, “reg-
istry_commit”, “registry_export”, “registry_save” and “registry_load” are measured.

Method

To measure the stack usage of a function in RIOT OS is possible, because the stack
implementation internally marks parts of the stack that have been “touched”. This way
the highest ever used stack count can be printed out, but this also has the downside that
before starting the measurement, the currently highest measured stack count must be
equal to the current stack count. This can be achieved by creating a new thread, which
start stack count is equal to the highest stack count until that moment.

This leads to the following stack consumption measurement strategy:

1. Create a new thread.

73

8 Evaluation of the implementation’s overhead

2. Get the current stack count (highest).

3. Save the current stack count to a variable.

4. Call the function which stack consumption needs to be measured.

5. Get the highest stack count.

6. Subtract the old stack count from the new stack count.

7. Print out the result to the terminal.

Measurements

Table 8.1 and Figure 8.1 show the result of this measurement in bytes. The first row of
Table 8.1 tells the length of the CP, all following rows show the stack consumption of each
function per CP length. The result shows that almost all functions don’t increase their
overall stack consumption at all if the CP length changes. One exception is “registry_-
export”, which has a increase of 16 bytes (+1.5%) from a CP with the length of 1 to a CP
with the length of 2 and it also has another increase of 16 bytes from a CP with the length
of 4 to a CP with the length of 5. The other exception is the function “registry_save”,
which oscillates between a stack consumption of up to 3,900 and down to 3,340.

Function \ CP length 1 2 3 4 5
registry_get_value 276 276 276 276 276
registry_set_value 308 308 308 308 308
registry_commit 464 464 464 464 464
registry_export 1,092 1,108 1,108 1,108 1,124
registry_save 3,884 3,340 3,900 3,340 3,356
registry_load 2,636 2,636 2,636 2,636 2,636

Table 8.1: Stack consumption of RIOT OS Registry API functions in bytes.

Figure 8.1 shows the stack consumption of each main RIOT OS Registry function on
the y axis in bytes. The x axis shows the length of the CP that was passed to each
function.

74

8 Evaluation of the implementation’s overhead

Configuratino Path length

S
ta

ck
 c

on
su

m
pt

io
n

in
 b

yt
es

0

1000

2000

3000

4000

1 2 3 4 5

registry_get_value

registry_set_value

registry_commit

registry_export

registry_save

registry_load

Figure 8.1: RIOT OS Registry stack consumption in bytes per API function on the CP
lengths 0 - 5.

Discussion

Overall the results of these measurements are not unexpected and possible to explain.
The “set” and “get” function are implemented without recursion and should not consume
more stack only because they need to go deeper into the CS structure. The “commit”
function has a similar implementation to the “get” and “set” functions, but still consumes
more stack because its slightly more complex implementation is currently distributed
among multiple functions that call each other and it also needs to call the callback
function of the SI to inform the driver / module about the to be applied changes (see
Figure 5.7 and Figure 5.6 for comparison). The “export” function is similar implemented
to the “commit” function (see Figure 5.8) and has its logic distributed among multiple
functions, that call each other. The major difference, that also causes the much higher
stack usage is that each of these functions take up to 7 times more arguments.

The stack consumption of the “registry_save” and “registry_load” functions however are
more difficult to discuss. In this example both use a SF that internally uses the RIOT
OS Virtual File System (VFS) layer, which abstracts over filesystems such as FatFs or

75

8 Evaluation of the implementation’s overhead

littlefs. In this case the littlefs abstraction is used. What happens with littlefs internally
is unknown, but the measurements behave reasonable in contrast to how the VFS SF
is implemented. Both functions do not use recursive function calls and only rely on
while loops that reuse data structures. As a consequence also these two function don not
consume more stack in relation to the CP length. But this conclusion is only valid for
the VFS SF. Other implementations may show different results.

In general the implementation of all the analyzed functions can be improved. Especially
the distribution into multiple functions that call each other by passing on a lot of ar-
guments is not ideal. It makes the source code less difficult to maintain, but has the
consequence of consuming unnecessarily much stack. It should theoretically be possi-
ble to make the functions “get”, “set”, “commit” and “export” consume almost the same
amount of stack with a more better implementation. Of course there would still be some
differences caused by the different requirements of these functions. Such things as the
callback of the “commit” function.

8.2 ROM

RIOT OS has a tool called “Cosy”. It can be used as a build target and analyzes the
last build binary size in different categories. To compare the ROM size of a RIOT OS
application with and without the RIOT OS Registry, the application is analyzed by the
given tool.

8.2.1 Full Binary Size Comparison

Method

First, the ROM size of a sample RIOT OS application is measured with all RIOT OS
Registry modules disabled in the makefile. Then the RIOT OS Registry modules get
enabled one by one and new measurements are taken. At the end the ROM size of all
modules together is measured as well. Subtracting the initial ROM size with all RIOT OS
Registry modules disabled from the measurements that enable some additional RIOT OS
Registry modules, allows to see the actual ROM size cost of using the RIOT OS Registry
modules.

76

8 Evaluation of the implementation’s overhead

Measurements

The measured size in bytes of the sample application without any RIOT OS modules
enabled can be seen in Table 8.2. The measurements with each module separately enabled
and also all at once can be seen in Table 8.3, which shows the name of the enabled modules
in column one, the total measured ROM size in bytes in column two, the difference
between with and without the module can be found in column three in bytes and in
column 4 in percentage relative to the ROM size without any RIOT OS Registry modules
enabled.

Enabled RIOT OS Registry module(s) Size in bytes
- 1,386,602

Table 8.2: ROM size without any RIOT OS Registry modules enabled.

Enabled RIOT OS
Registry module(s)

Size in bytes Difference in bytes Difference in %

registry 1,437,782 +51,180 +3.7
registry_schemas 1,416,356 +29,754 +2.1
registry_storage_facilities 1,419,947 +33,345 +2.4
registry_cli 1,407,312 +20,710 +1.5
All registry_* modules 1,503,139 +116,537 +8.4

Table 8.3: ROM size of RIOT OS Registry modules and their overhead in bytes and
percentage.

Discussion

It should be noted that if the ROM size differences of each RIOT OS Registry module
get accumulated, the result (134,989) is 18,452 bytes larger then if all RIOT OS Registry
modules are enabled together. This is caused by shared dependencies that get optimized
by the compiler.

Besides the RIOT OS Registry modules listed in Table 8.3, there is also the “registry_-
tests” module. This module only contains tests and is not needed when using the RIOT
OS Registry inside an application. That is why it is not part of Table 8.3, which means
it is also not part of the “All registry_* modules” enabled row.

77

8 Evaluation of the implementation’s overhead

8.2.2 Compiled Object Sizes

Method

The "Cosy" tool also allows to show the exact size of compiled object files. This allows to
get a more precise view of how much ROM is exactly used per module implementation.

Measurements

To be able directly compare with the previous measurements listed in Table 8.3, in
Table 8.4 the object file sizes are not provided alone, but also accumulated per RIOT OS
module. By comparing the sizes of column 2 in Table 8.4 to the calculated differences
in column 3 of Table 8.3, it can be said, that each of the corresponding values have
around the same size. In most cases the object files based module size is between 3 to 4.5
kilobytes smaller, except in case of the “registry” module, which is around 4.5 kilobytes
larger then the measurement of Table 8.3.

Module
Module size
in bytes

Object file
Object file size

in bytes

registry 55,678
registry.o 39,447
registry_conversion.o 16,231

registry_schemas 25,219
registry_schemas_init.o 5,726
registry_schema_rgb_led.o 8,834
registry_schema_full_example.o 10,659

registry_
storage_facilities

30,335
registry_storage_facility_vfs.o 21,189
registry_storage_facility_heap.o 9,146

registry_cli 17,824 registry_cli.o 17,824

registry_tests 53,128
registry_tests_stack.o 32,597
registry_tests_api.o 20,531

Table 8.4: Compiled object file size of RIOT OS Registry modules.

Figure 8.2 shows the same results as Table 8.4, but as a donut diagram to better under-
stand the relation between the measured objects. The inner circle represents the RIOT
OS Registry modules and the outer circle represents the corresponding object files that
were compiled from the c-files implementing these modules.

78

8 Evaluation of the implementation’s overhead

Figure 8.2: RIOT OS Registry ROM usage per module (inner circle) and per object file
(outer circle).

Discussion

The more fine-grained measurements are helpful because the “registry_schemas” and
“registry_storage_facilites” modules allow to enable and disable each CS and SF imple-
mentation separately. This way a lot of ROM overhead can be avoided by only enabling
what is needed and these measurements show about how much can be saved.

It should also be noted that the “registry_tests” module is usually not enabled when
using the RIOT OS Registry.

79

9 Future Work

9.1 Full Test Coverage

As mentioned in 7, the currently implemented tests don’t have the highest test coverage
yet. In the future the unit tests of the RIOT OS Registry should be extended to find
and prevent more implementation mistakes.

9.2 Exposing Configuration Parameters Beyond
Abstraction

Investigate how to expose custom config data beyond abstraction: Some sensors have
very specific configuration parameters that can not all be sufficiently abstracted through
one large interface. Possible solutions:

• Implement custom CS for these sensors.

• Expose those parameters through a field in every CS that can hold additional
parameters and is not type-safe. Set, Get handlers and persistence must be imple-
mented by the driver itself and not the CS in this case.

9.3 Extend Configuration Parameter Value Constraints

Investigate how to expose further value constraints of configuration parameters. Con-
figuration parameters, in the case of numbers, usually for example don’t expect the full
range that the size of a primitive c-type (8, 16, 32 or 64-bit) allows. In some cases maybe
even only a certain set of specifically selected values is a correct configuration value.

80

9 Future Work

There should be a way to specify how to expose those constraints through the Registry
API through additional metadata fields. Possible use-cases:

• Constrain the minimum and maximum value of a numeric configuration parameter.

• Constrain the minimum and maximum length of a (string) configuration parameter.

• Specifies a set of values that are allowed to be set. This gives the possibility to
implicitly define an “enum” like configuration parameter.

9.4 External Configuration Manager Implementation

This thesis only specifies the architectural design of how CoAP, MQTT and LwM2M can
be used to implement external Configuration Managers for the RIOT OS and only im-
plements a CLI for external configuration management (see subsubsection 5.3.1). Those
integrations still need to be implemented.

• CoAP based API (uses registry structure).

• MQTT based API (uses registry structure).

• LwM2M mapping (RIOT OS Registry => LwM2M Object Models).

9.5 Specification of Sys Configuration Schemas

As of now the RIOT OS Registry only comes with two simple example CSs in its “sys”
CN, one being an LED-RGB CS to control the color of an rgb LED, and the other being
a CS with the name “full_example” that contains all supported parameter types for
testing. To give modules/drivers the ability to implement CSs, first those CSs must be
defined. This is no simple task as each CS must be specified in a way that is compatible
to as many as possible drivers of the same kind.

81

9 Future Work

9.6 Integration of the RIOT OS Registry into RIOT OS
Modules and Drivers.

After a CS is specified as explained in section 9.5, it has to be implemented by the
compatible modules/drivers that need runtime configuration.

82

10 Conclusion

Our main goal of this thesis to specify a runtime configuration registry for RIOT OS
has been achieved (see chapter 5). The implementation (see chapter 6) has also been
successful and fulfills all the requirements specified in chapter 3.

Looking back and around to see what has already been done prior to this thesis in chap-
ter 4 has been very helpful for us to get an overview of in what ways RCSs have been
designed so far and for which use-cases. Thinking about the use-cases of already existing
solutions helped in specifying use-cases and requirements that are relevant to fulfill, for
the RIOT OS implementation even if the related work was not exactly what is needed
for a RIOT OS RCS. This in turn helped us to assess how much the in chapter 4 assessed
already existing implementations are capable of fulfilling these RIOT OS-specific require-
ments (see chapter 3 and chapter 4 section 4.3). We learned that none of the assessed
already existing implementations fulfill all the requirements of chapter 3, but we were
able to base the new RIOT OS Registry on the existing Mynewt Config implementation
for RIOT OS, which helped speed up the development process by a lot. Our final design
(see chapter 5) turned out much different to from where it started (Mynewt Config), but
the main API functions are still roughly the same.

Writing unit tests (see chapter 7) helped not only finding a lot of bugs in the RIOT OS
Registry implementation, but also helped in creating new ones while further iterating
on the RIOT OS Registry’s implementation. Which is why, it is of high importance to
further increase the testing coverage as mentioned in chapter 9.

chapter 8 showed us that our implementation’s overhead is acceptable for devices with
enough memory (stack overhead up to > 4 kilobyte) and it does not perform any dynamic
heap allocations, but there are still many ways to further reduce its stack overhead.

For the future it will be very interesting to see how good the new RIOT OS Registry can
specify CSs that abstract common configuration parameters shared by the many RIOT
OS modules and drivers (see section 9.5).

83

Bibliography

[1] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol
(CoAP),” IETF, RFC 7252, June 2014.

[2] C. Bormann and P. Hoffman, “Concise Binary Object Representation (CBOR),”
IETF, RFC 8949, December 2020.

[3] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format,” IETF,
RFC 8259, December 2017.

[4] Apache Software Foundation, “Apache Mynewt,” https://mynewt.apache.org, last
accessed 07-17-2020, 2020.

[5] O. SpecWorks, “Lightweight Machine to Machine Technical Specification: Core
v1.2,” Open Mobile Alliance, Tech. Rep., 2020.

[6] “matter standard,” https://csa-iot.org/all-solutions/matter/, [Online; accessed 07-
01-2023].

[7] E. Baccelli, C. Gündogan, O. Hahm, P. Kietzmann, M. Lenders, H. Petersen,
K. Schleiser, T. C. Schmidt, and M. Wählisch, “RIOT: an Open Source Operating
System for Low-end Embedded Devices in the IoT,” IEEE Internet of Things
Journal, vol. 5, no. 6, pp. 4428–4440, December 2018. [Online]. Available:
http://dx.doi.org/10.1109/JIOT.2018.2815038

[8] “Riot os documentation,” https://doc.riot-os.org/, [Online; accessed 06-01-2023].

[9] GNU Make, https://www.gnu.org/software/make/manual/make.pdf, [Online; ac-
cessed 14-01-2023].

[10] The Linux Kernel Development Community, “Kconfig Language,” https://www.
kernel.org/doc/html/latest/kbuild/kconfig-language.html, last accessed 28-09-2020,
2020.

84

https://mynewt.apache.org
https://csa-iot.org/all-solutions/matter/
http://dx.doi.org/10.1109/JIOT.2018.2815038
https://doc.riot-os.org/
https://www.gnu.org/software/make/manual/make.pdf
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html

Bibliography

[11] V. Rana, M. Santambrogio, and D. Sciuto, “Dynamic reconfigurability in embedded
system design,” in 2007 IEEE International Symposium on Circuits and Systems,
2007, pp. 2734–2737.

[12] M. Lenders, P. Kietzmann, O. Hahm, H. Petersen, C. Gündogan, E. Baccelli,
K. Schleiser, T. C. Schmidt, and M. Wählisch, “Connecting the World of Embedded
Mobiles: The RIOT Approach to Ubiquitous Networking for the Internet of
Things,” Open Archive: arXiv.org, Technical Report arXiv:1801.02833, January
2018. [Online]. Available: https://arxiv.org/abs/1801.02833

[13] “Riot os drivers,” https://doc.riot-os.org/group__drivers.html, [Online; accessed
08-01-2023].

[14] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” IETF, RFC 3986, January 2005.

[15] A. Banks and R. G. (Eds.), “MQTT Version 3.1.1,” OASIS, OASIS Standard,
October 2014. [Online]. Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/
os/mqtt-v3.1.1-os.html

[16] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and
T. Watteyne, “Understanding the Limits of LoRaWAN,” Communications Magazine,
vol. 55, no. 9, pp. 34–40, Sep. 2017.

[17] M. Veillette, P. van der Stok, A. Pelov, A. Bierman, and I. Petrov, “CoAP Manage-
ment Interface (CORECONF),” IETF, Internet-Draft – work in progress 11, January
2021.

[18] M. Hussein, S. Li, and A. Radermacher, “Model-driven development of adaptive iot
systems.” in MODELS (Satellite Events), 2017, pp. 17–23.

[19] B. Costa, P. F. Pires, and F. C. Delicato, “Modeling iot applications with sysml4iot,”
in 2016 42th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA), 2016, pp. 157–164.

[20] F. Alkhabbas, R. Spalazzese, and P. Davidsson, “Architecting emergent configura-
tions in the internet of things,” in 2017 IEEE International Conference on Software
Architecture (ICSA), 2017, pp. 221–224.

[21] M. Bjorklund, “YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF),” IETF, RFC 6020, October 2010.

85

https://arxiv.org/abs/1801.02833
https://doc.riot-os.org/group__drivers.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Bibliography

[22] Zephyr Project, “Zephyr,” https://www.zephyrproject.org, last accessed 07-17-2020,
2020.

[23] “Zephyr settings pr,” https://github.com/zephyrproject-rtos/zephyr/pull/6408,
[Online; accessed 26-09-2022].

[24] “Eclipse wakaama,” https://github.com/eclipse/wakaama, [Online; accessed 04-01-
2023].

[25] “Riot pr 10622,” https://github.com/RIOT-OS/RIOT/pull/10622, [Online; ac-
cessed 24-11-2022].

[26] “Riot pr 10799,” https://github.com/RIOT-OS/RIOT/pull/10799, [Online; ac-
cessed 24-11-2022].

[27] “Wikipedia,” https://wikipedia.org, [Online; accessed 19-01-2023].

[28] “Lightweight m2m (lwm2m),” https://omaspecworks.org/what-is-oma-specworks/
iot/lightweight-m2m-lwm2m, [Online; accessed 13-01-2023].

[29] “Sk6812,” https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+
datasheet+.pdf, [Online; accessed 20-01-2023].

[30] “Ucs1903,” https://cdn.sparkfun.com/assets/6/d/6/c/3/UCS1903_IC-manul.pdf,
[Online; accessed 20-01-2023].

[31] “Ws2812,” https://cdn-shop.adafruit.com/datasheets/WS2812.pdf, [Online; ac-
cessed 20-01-2023].

86

https://www.zephyrproject.org
https://github.com/zephyrproject-rtos/zephyr/pull/6408
https://github.com/eclipse/wakaama
https://github.com/RIOT-OS/RIOT/pull/10622
https://github.com/RIOT-OS/RIOT/pull/10799
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m
https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf
https://cdn.sparkfun.com/assets/6/d/6/c/3/UCS1903_IC-manul.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf

Glossary

Configuration Manager In the context of this thesis a Configuration Manager is an
application that allows to change configurations of configurable devices at runtime.
.

LwM2M “OMA SpecWorks’ LightweightM2M is a device management protocol designed
for sensor networks and the demands of a machine-to-machine (M2M) environment.
With LwM2M, OMA SpecWorks has responded to demand in the market for a
common standard for managing lightweight and low power devices on a variety of
networks necessary to realize the potential of IoT. The LwM2M protocol, designed
for remote management of M2M devices and related service enablement, features
a modern architectural design based on REST, defines an extensible resource and
data model and builds on an efficient secure data transfer standard called the
Constrained Application Protocol (CoAP). LwM2M has been specified by a group
of industry experts at the OMA SpecWorks Device Management Working Group
and is based on protocol and security standards from the IETF” [28, 5] .

MQTT “MQTT is a Client Server publish/subscribe messaging transport protocol. It
is light weight, open, simple, and designed so as to be easy to implement. These
characteristics make it ideal for use in many situations, including constrained envi-
ronments such as for communication in Machine to Machine (M2M) and Internet
of Things (IoT) contexts where a small code footprint is required and/or network
bandwidth is at a premium” [15] .

RIOT OS “As the Internet of Things (IoT) emerges, compact operating systems (OSs)
are required on low-end devices to ease development and portability of IoT appli-
cations. RIOT is a prominent free and open source OS in this space.” [7] .

87

Glossary

SK6812 “SK6812 is a set of smart control circuit and a light emitting circuit in one of
the controlled LED source” [29] .

UCS1903 “3-Channel Constant Current LED Driver UCS1903” [30] .

WS2812 “WS2812 is a intelligent control LED light source that the control circuit and
RGB chip are integrated in a package of 5050 components” [31] .

88

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

89

	List of Figures
	List of Tables
	Listings
	Abbreviations
	Introduction
	Context
	The Problem of Runtime Configuration in *gl:riotos
	Thesis Aims and Objectives
	Thesis Structure

	Background of (OS) Configuration
	The Importance of Configuration
	Static vs. Dynamic Configuration
	Benefits of an Operating System-Level Implementation

	Requirements of a Runtime Configuration System (RCS)
	Shared *ac:cs
	Multiple Instances per *ac:cs
	Integer Path as the Identifier of Configuration Values
	Nested *ac:cg
	Typed Configuration Parameters
	Binary Internal Configuration Parameter Value Format
	Transactionally Commit Configuration Changes
	Persistent Configurations
	Low Implementation Effort for Modules/Drivers
	Integration with External *gl:configurationmanager

	Related Work
	Academic Work
	Model-driven Development of Adaptive IoT Systems
	Architecting Emergent Configurations in the Internet of Things
	CoAP Management Interface (CORECONF)

	Implementation Work
	Apache Mynewt: Config
	Zephyr: Settings
	*gl:lwm2m Object and Resource Registry
	Prior Work on *gl:riotos

	Assessment of Implementation Work on Thesis's ac:rcs Requirements
	Apache Mynewt Config Subsystem
	*gl:lwm2m Object and Resource Registry

	Summary of Implementation Work Assessment
	Conclusion of Implementation Work Assessment

	Design of the new RIOT OS RCS
	Architecture
	*gl:riotos Registry
	*ac:cs (*ac:cs)
	*ac:sf (*ac:sf)
	*ac:cp (*ac:cp)
	*ac:api and Usage Flows

	Integration of External *gl:configurationmanager
	Simple *gl:configurationmanager
	Advanced *gl:configurationmanager

	Implementation of the *gl:riotos Registry
	*ac:cs
	*ac:sf
	*ac:cp
	*ac:api
	Basic *ac:api
	Schema Setup *ac:api
	*ac:sf Setup *ac:api

	Testing of the Implementation's Correctness
	Test Setup
	Testing the ``registry_get'' and ``registry_set'' Functions
	Testing the ``registry_commit'' Function
	Testing the ``registry_export'' Function
	Testing the ``registry_save'' and ``registry_load'' Function

	Evaluation of the implementation's overhead
	RAM
	Heap
	Stack

	ROM
	Full Binary Size Comparison
	Compiled Object Sizes

	Future Work
	Full Test Coverage
	Exposing Configuration Parameters Beyond Abstraction
	Extend Configuration Parameter Value Constraints
	External *gl:configurationmanager Implementation
	Specification of Sys *ac:cs
	Integration of the *gl:riotos Registry into *gl:riotos Modules and Drivers.

	Conclusion
	Bibliography
	Glossary
	Declaration of Autorship

